BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30472447)

  • 1. Removal of persistent DDT residues from soils by earthworms: A mechanistic study.
    Xu HJ; Bai J; Li WY; Zhao LX; Li YT
    J Hazard Mater; 2019 Mar; 365():622-631. PubMed ID: 30472447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of the enhanced DDT removal from soils by earthworms: Identification of DDT degraders in drilosphere and non-drilosphere matrices.
    Xu HJ; Bai J; Li W; Murrell JC; Zhang Y; Wang J; Luo C; Li Y
    J Hazard Mater; 2021 Feb; 404(Pt B):124006. PubMed ID: 33068995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement effect of two ecological earthworm species (Eisenia foetida and Amynthas robustus E. Perrier) on removal and degradation processes of soil DDT.
    Lin Z; Li XM; Li YT; Huang DY; Dong J; Li FB
    J Environ Monit; 2012 May; 14(6):1551-8. PubMed ID: 22584803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic biodegradation of DDT residues (DDT, DDD, and DDE) in estuarine sediment.
    Huang HJ; Liu SM; Kuo CE
    J Environ Sci Health B; 2001 May; 36(3):273-88. PubMed ID: 11411851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of earthworm and chemical assays of the bioavailability of aged 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene, 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane, and heavy metals in orchard soils.
    Gaw S; Northcott G; Kim N; Wilkins A; Jensen J
    Environ Toxicol Chem; 2012 Jun; 31(6):1306-16. PubMed ID: 22447312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Chryseobacterium sp. PYR2 degrades various organochlorine pesticides (OCPs) and achieves enhancing removal and complete degradation of DDT in highly contaminated soil.
    Qu J; Xu Y; Ai GM; Liu Y; Liu ZP
    J Environ Manage; 2015 Sep; 161():350-357. PubMed ID: 26203874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DDE remediation and degradation.
    Thomas JE; Ou LT; All-Agely A
    Rev Environ Contam Toxicol; 2008; 194():55-69. PubMed ID: 18069646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sources and transformation pathways for dichlorodiphenyltrichloroethane (DDT) and metabolites in soils from Northwest Fujian, China.
    Huang H; Zhang Y; Chen W; Chen W; Yuen DA; Ding Y; Chen Y; Mao Y; Qi S
    Environ Pollut; 2018 Apr; 235():560-570. PubMed ID: 29329097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement effect of earthworm (Eisenia fetida) on acetochlor biodegradation in soil and possible mechanisms.
    Hao Y; Zhao L; Sun Y; Li X; Weng L; Xu H; Li Y
    Environ Pollut; 2018 Nov; 242(Pt A):728-737. PubMed ID: 30029172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profiles of organochlorine pesticides in earthworms from urban leisure areas of Beijing, China.
    Li XH; Wang XZ; Wang W; Jiang XN; Xu XB
    Bull Environ Contam Toxicol; 2010 Apr; 84(4):473-6. PubMed ID: 20238098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant-enhanced solubilization and anaerobic biodegradation of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)-ethane (DDT) in contaminated soil.
    Walters GW; Aitken MD
    Water Environ Res; 2001; 73(1):15-23. PubMed ID: 11558297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organochlorine insecticide residues in soil and earthworms in the Delhi area, India, August--October, 1974.
    Yadav DV; Mittal PK; Agarwal HC; Pillai MK
    Pestic Monit J; 1981 Sep; 15(2):80-5. PubMed ID: 7312554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survival, growth, detoxifying and antioxidative responses of earthworms (Eisenia fetida) exposed to soils with industrial DDT contamination.
    Shi Y; Zhang Q; Huang D; Zheng X; Shi Y
    Pestic Biochem Physiol; 2016 Mar; 128():22-9. PubMed ID: 26969436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic transformation of DDT related to iron(III) reduction and microbial community structure in paddy soils.
    Chen M; Cao F; Li F; Liu C; Tong H; Wu W; Hu M
    J Agric Food Chem; 2013 Mar; 61(9):2224-33. PubMed ID: 23402620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of chlorinated pesticide DDT by litter-decomposing basidiomycetes.
    Suhara H; Adachi A; Kamei I; Maekawa N
    Biodegradation; 2011 Nov; 22(6):1075-86. PubMed ID: 21380735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Dynamics of DDMS and DDMU in soils under rice and ryegrass planting].
    An Q; Dong YH; Wei F; Wang H; Liang PX
    Huan Jing Ke Xue; 2007 Dec; 28(12):2794-9. PubMed ID: 18290439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agricultural soil and drilosphere as reservoirs of new and unusual assimilators of 2,4-dichlorophenol carbon.
    Dallinger A; Horn MA
    Environ Microbiol; 2014 Jan; 16(1):84-100. PubMed ID: 23919434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The earthworm Aporrectodea caliginosa stimulates abundance and activity of phenoxyalkanoic acid herbicide degraders.
    Liu YJ; Zaprasis A; Liu SJ; Drake HL; Horn MA
    ISME J; 2011 Mar; 5(3):473-85. PubMed ID: 20740027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of new bacterial transformation products of 1,1,1-trichloro-2,2-bis-(4-chlorophenyl) ethane (DDT) by gas chromatography/mass spectrometry.
    Massé R; Lalanne D; Messier F; Sylvestre M
    Biomed Environ Mass Spectrom; 1989 Sep; 18(9):741-52. PubMed ID: 2790260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dechlorination of DDT mediated by bimetallic systems.
    Gautam SK; Sumathi S
    Environ Technol; 2006 Apr; 27(4):387-94. PubMed ID: 16583823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.