BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30472733)

  • 1. Elevated carbon dioxide plus chronic warming causes dramatic increases in leaf angle in tomato, which correlates with reduced plant growth.
    Jayawardena DM; Heckathorn SA; Bista DR; Boldt JK
    Plant Cell Environ; 2019 Apr; 42(4):1247-1256. PubMed ID: 30472733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Species Survey of Leaf Hyponasty Responses to Warming Plus Elevated CO
    Thomas MD; Roberts R; Heckathorn SA; Boldt JK
    Plants (Basel); 2024 Jan; 13(2):. PubMed ID: 38256757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elevated Carbon Dioxide and Chronic Warming Together Decrease Nitrogen Uptake Rate, Net Translocation, and Assimilation in Tomato.
    Jayawardena DM; Heckathorn SA; Rajanayake KK; Boldt JK; Isailovic D
    Plants (Basel); 2021 Apr; 10(4):. PubMed ID: 33917687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melatonin mediates elevated carbon dioxide-induced photosynthesis and thermotolerance in tomato.
    Hasan MK; Xing QF; Zhou CY; Wang KX; Xu T; Yang P; Qi ZY; Shao SJ; Ahammed GJ; Zhou J
    J Pineal Res; 2023 Apr; 74(3):e12858. PubMed ID: 36732033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elevated CO
    Jayawardena DM; Heckathorn SA; Bista DR; Mishra S; Boldt JK; Krause CR
    Physiol Plant; 2017 Mar; 159(3):354-365. PubMed ID: 27893161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in the leaf δ(13)C is correlated with salinity tolerance under elevated CO(2) concentration.
    del Amor FM
    J Plant Physiol; 2013 Feb; 170(3):283-90. PubMed ID: 23286998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depression of sink activity precedes the inhibition of biomass production in tomato plants subjected to potassium deficiency stress.
    Kanai S; Ohkura K; Adu-Gyamfi JJ; Mohapatra PK; Nguyen NT; Saneoka H; Fujita K
    J Exp Bot; 2007; 58(11):2917-28. PubMed ID: 17630289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordination between vapor pressure deficit and CO
    Jiao XC; Song XM; Zhang DL; Du QJ; Li JM
    Sci Rep; 2019 Jun; 9(1):8700. PubMed ID: 31213627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stomatal movements are involved in elevated CO
    Zhang H; Pan C; Gu S; Ma Q; Zhang Y; Li X; Shi K
    Physiol Plant; 2019 Mar; 165(3):569-583. PubMed ID: 29732568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity.
    Kanai S; Moghaieb RE; El-Shemy HA; Panigrahi R; Mohapatra PK; Ito J; Nguyen NT; Saneoka H; Fujita K
    Plant Sci; 2011 Feb; 180(2):368-74. PubMed ID: 21421382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field.
    Locke AM; Sack L; Bernacchi CJ; Ort DR
    Ann Bot; 2013 Sep; 112(5):911-8. PubMed ID: 23864003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactive effects of elevated CO
    Zhou R; Yu X; Wen J; Jensen NB; Dos Santos TM; Wu Z; Rosenqvist E; Ottosen CO
    BMC Plant Biol; 2020 Jun; 20(1):260. PubMed ID: 32505202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Alleviation of Photosynthetic Damage in Tomato under Drought and Cold Stress by High CO
    Zhou R; Wan H; Jiang F; Li X; Yu X; Rosenqvist E; Ottosen CO
    Int J Mol Sci; 2020 Aug; 21(15):. PubMed ID: 32759822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elevated [CO2] negatively impacts C4 photosynthesis under heat and water stress without penalizing biomass.
    Al-Salman Y; Ghannoum O; Cano FJ
    J Exp Bot; 2023 Apr; 74(9):2875-2890. PubMed ID: 36800252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaf trait responses to global change factors in terrestrial ecosystems.
    Hai X; Shangguan Z; Peng C; Deng L
    Sci Total Environ; 2023 Nov; 898():165572. PubMed ID: 37454860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leaf-age dependent response of carotenoid accumulation to elevated CO
    Dhami N; Tissue DT; Cazzonelli CI
    Arch Biochem Biophys; 2018 Jun; 647():67-75. PubMed ID: 29604257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functional-structural plant model.
    Sarlikioti V; de Visser PH; Marcelis LF
    Ann Bot; 2011 Apr; 107(5):875-83. PubMed ID: 21355008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional microscale modelling of CO2 transport and light propagation in tomato leaves enlightens photosynthesis.
    Ho QT; Berghuijs HN; Watté R; Verboven P; Herremans E; Yin X; Retta MA; Aernouts B; Saeys W; Helfen L; Farquhar GD; Struik PC; Nicolaï BM
    Plant Cell Environ; 2016 Jan; 39(1):50-61. PubMed ID: 26082079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sites of action of elevated CO2 on leaf development in rice: discrimination between the effects of elevated CO2 and nitrogen deficiency.
    Tsutsumi K; Konno M; Miyazawa S; Miyao M
    Plant Cell Physiol; 2014 Feb; 55(2):258-68. PubMed ID: 24406628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosynthesis and carbon allocation are both important predictors of genotype productivity responses to elevated CO2 in Eucalyptus camaldulensis.
    Aspinwall MJ; Blackman CJ; de Dios VR; Busch FA; Rymer PD; Loik ME; Drake JE; Pfautsch S; Smith RA; Tjoelker MG; Tissue DT
    Tree Physiol; 2018 Sep; 38(9):1286-1301. PubMed ID: 29741732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.