BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 30472798)

  • 1. Metabolite profiling and genome-wide association studies reveal response mechanisms of phosphorus deficiency in maize seedling.
    Luo B; Ma P; Nie Z; Zhang X; He X; Ding X; Feng X; Lu Q; Ren Z; Lin H; Wu Y; Shen Y; Zhang S; Wu L; Liu D; Pan G; Rong T; Gao S
    Plant J; 2019 Mar; 97(5):947-969. PubMed ID: 30472798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcript profiling of maize inbreds in response to long-term phosphorus deficiency stress.
    Sun Y; Mu C; Chen Y; Kong X; Xu Y; Zheng H; Zhang H; Wang Q; Xue Y; Li Z; Ding Z; Liu X
    Plant Physiol Biochem; 2016 Dec; 109():467-481. PubMed ID: 27825075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide identification of microRNAs responding to early stages of phosphate deficiency in maize.
    Nie Z; Ren Z; Wang L; Su S; Wei X; Zhang X; Wu L; Liu D; Tang H; Liu H; Zhang S; Gao S
    Physiol Plant; 2016 Jun; 157(2):161-74. PubMed ID: 26572939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative proteome analyses of phosphorus responses in maize (Zea mays L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency.
    Li K; Xu C; Li Z; Zhang K; Yang A; Zhang J
    Plant J; 2008 Sep; 55(6):927-39. PubMed ID: 18489707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels.
    Calderon-Vazquez C; Ibarra-Laclette E; Caballero-Perez J; Herrera-Estrella L
    J Exp Bot; 2008; 59(9):2479-97. PubMed ID: 18503042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines.
    Zenda T; Liu S; Wang X; Liu G; Jin H; Dong A; Yang Y; Duan H
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological and comparative proteome analyses reveal low-phosphate tolerance and enhanced photosynthesis in a maize mutant owing to reinforced inorganic phosphate recycling.
    Zhang K; Liu H; Song J; Wu W; Li K; Zhang J
    BMC Plant Biol; 2016 Jun; 16(1):129. PubMed ID: 27277671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional responses of maize seedling root to phosphorus starvation.
    Lin HJ; Gao J; Zhang ZM; Shen YO; Lan H; Liu L; Xiang K; Zhao M; Zhou S; Zhang YZ; Gao SB; Pan GT
    Mol Biol Rep; 2013 Sep; 40(9):5359-79. PubMed ID: 23670044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots.
    Fan W; Zhao M; Li S; Bai X; Li J; Meng H; Mu Z
    BMC Plant Biol; 2016 Apr; 16():99. PubMed ID: 27101806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Wide Association Study of 13 Traits in Maize Seedlings under Low Phosphorus Stress.
    Wang QJ; Yuan Y; Liao Z; Jiang Y; Wang Q; Zhang L; Gao S; Wu F; Li M; Xie W; Liu T; Xu J; Liu Y; Feng X; Lu Y
    Plant Genome; 2019 Nov; 12(3):1-13. PubMed ID: 33016582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolite Profiling of Low-P Tolerant and Low-P Sensitive Maize Genotypes under Phosphorus Starvation and Restoration Conditions.
    Ganie AH; Ahmad A; Pandey R; Aref IM; Yousuf PY; Ahmad S; Iqbal M
    PLoS One; 2015; 10(6):e0129520. PubMed ID: 26090681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of metabolome and transcriptome analyses highlights soybean roots responding to phosphorus deficiency by modulating phosphorylated metabolite processes.
    Mo X; Zhang M; Liang C; Cai L; Tian J
    Plant Physiol Biochem; 2019 Jun; 139():697-706. PubMed ID: 31054472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. mays).
    Mano Y; Omori F
    Ann Bot; 2013 Oct; 112(6):1125-39. PubMed ID: 23877074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GWAS and WGCNA uncover hub genes controlling salt tolerance in maize (Zea mays L.) seedlings.
    Ma L; Zhang M; Chen J; Qing C; He S; Zou C; Yuan G; Yang C; Peng H; Pan G; Lübberstedt T; Shen Y
    Theor Appl Genet; 2021 Oct; 134(10):3305-3318. PubMed ID: 34218289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic Dissection of Phosphorus Use Efficiency in a Maize Association Population under Two P Levels in the Field.
    Li D; Wang H; Wang M; Li G; Chen Z; Leiser WL; Weiß TM; Lu X; Wang M; Chen S; Chen F; Yuan L; Würschum T; Liu W
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Proteomics of Salt-Tolerant and Salt-Sensitive Maize Inbred Lines to Reveal the Molecular Mechanism of Salt Tolerance.
    Chen F; Fang P; Peng Y; Zeng W; Zhao X; Ding Y; Zhuang Z; Gao Q; Ren B
    Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31554168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revealing new insights into different phosphorus-starving responses between two maize (Zea mays) inbred lines by transcriptomic and proteomic studies.
    Jiang H; Zhang J; Han Z; Yang J; Ge C; Wu Q
    Sci Rep; 2017 Mar; 7():44294. PubMed ID: 28276535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organellar genome copy number variation and integrity during moderate maturation of roots and leaves of maize seedlings.
    Ma J; Li XQ
    Curr Genet; 2015 Nov; 61(4):591-600. PubMed ID: 25782449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome Profiling of Maize (
    Waititu JK; Cai Q; Sun Y; Sun Y; Li C; Zhang C; Liu J; Wang H
    Genes (Basel); 2021 Oct; 12(10):. PubMed ID: 34681032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic robustness in young roots underpins a predictive model of maize hybrid performance in the field.
    de Abreu E Lima F; Westhues M; Cuadros-Inostroza Á; Willmitzer L; Melchinger AE; Nikoloski Z
    Plant J; 2017 Apr; 90(2):319-329. PubMed ID: 28122143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.