BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 30472825)

  • 1. Detection of Various Biomarkers and Enzymes via a Nanocluster-Based Fluorescence Turn-on Sensing Platform.
    Zhao Y; Liu H; Jiang Y; Song S; Zhao Y; Zhang C; Xin J; Yang B; Lin Q
    Anal Chem; 2018 Dec; 90(24):14578-14585. PubMed ID: 30472825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold nanocluster-based ratiometric fluorescent probes for hydrogen peroxide and enzymatic sensing of uric acid.
    Yang D; Luo M; Di J; Tu Y; Yan J
    Mikrochim Acta; 2018 May; 185(6):305. PubMed ID: 29777313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel ratiometric fluorescent probe for the detection of uric acid in human blood based on H
    Wang XY; Zhu GB; Cao WD; Liu ZJ; Pan CG; Hu WJ; Zhao WY; Sun JF
    Talanta; 2019 Jan; 191():46-53. PubMed ID: 30262085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A gold nanocluster-based sensor for sensitive uric acid detection.
    Xu P; Li R; Tu Y; Yan J
    Talanta; 2015 Nov; 144():704-9. PubMed ID: 26452880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free and selective sensing of uric acid with gold nanoclusters as optical probe.
    Wang J; Chang Y; Wu WB; Zhang P; Lie SQ; Huang CZ
    Talanta; 2016 May; 152():314-20. PubMed ID: 26992526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence turn-on detection of glucose via the Ag nanoparticle mediated release of a perylene probe.
    Li J; Li Y; Shahzad SA; Chen J; Chen Y; Wang Y; Yang M; Yu C
    Chem Commun (Camb); 2015 Apr; 51(29):6354-6. PubMed ID: 25763414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative determination of uric acid using CdTe nanoparticles as fluorescence probes.
    Jin D; Seo MH; Huy BT; Pham QT; Conte ML; Thangadurai D; Lee YI
    Biosens Bioelectron; 2016 Mar; 77():359-65. PubMed ID: 26433069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold nanoclusters as switch-off fluorescent probe for detection of uric acid based on the inner filter effect of hydrogen peroxide-mediated enlargement of gold nanoparticles.
    Liu Y; Li H; Guo B; Wei L; Chen B; Zhang Y
    Biosens Bioelectron; 2017 May; 91():734-740. PubMed ID: 28130993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fenton's reagent-tuned DNA-templated fluorescent silver nanoclusters as a versatile fluorescence probe and logic device.
    Zhang LP; Zhang XX; Hu B; Shen LM; Chen XW; Wang JH
    Analyst; 2012 Nov; 137(21):4974-80. PubMed ID: 22968007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Turn-On Detection of DNA Sequences by Means of Fluorescence of DNA-Templated Silver Nanoclusters via Unique Interactions of a Hydrated Ionic Liquid.
    Teng Y; Tateishi-Karimata H; Tsuruoka T; Sugimoto N
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30404141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent detection of hydrogen peroxide and glucose with polyethyleneimine-templated Cu nanoclusters.
    Ling Y; Zhang N; Qu F; Wen T; Gao ZF; Li NB; Luo HQ
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():315-20. PubMed ID: 24055680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Turn-Off-On" Fluorescence Switching of Ascorbic Acid-Reductive Silver Nanoclusters: a Sensor for Ascorbic Acid and Arginine in Biological Fluids.
    Li N; He Y; Ge Y; Song G
    J Fluoresc; 2017 Jan; 27(1):293-302. PubMed ID: 27796631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peroxyoxalate chemiluminescent assay for oxidase activities based on detecting enzymatically formed hydrogen peroxide.
    Nakashima K; Kuroda N; Kawaguchi S; Wada M; Akiyama S
    J Biolumin Chemilumin; 1995; 10(3):185-91. PubMed ID: 7676861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular beacon-like Ag nanocluster fluorescence probe for nucleic acid detection.
    Zhao Y; Zhang H; Lian L; Wang X; Gao W; Zhu B; Lou D
    Anal Sci; 2022 Jan; 38(1):131-136. PubMed ID: 35287214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective fluorogenic and chromogenic probe for detection of silver ions and silver nanoparticles in aqueous media.
    Chatterjee A; Santra M; Won N; Kim S; Kim JK; Kim SB; Ahn KH
    J Am Chem Soc; 2009 Feb; 131(6):2040-1. PubMed ID: 19159289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytidine-stabilized gold nanocluster as a fluorescence turn-on and turn-off probe for dual functional detection of Ag(+) and Hg(2+).
    Zhang Y; Jiang H; Wang X
    Anal Chim Acta; 2015 Apr; 870():1-7. PubMed ID: 25819783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GelRed/[G
    Chen JQ; Xue SF; Chen ZH; Zhang S; Shi G; Zhang M
    Biosens Bioelectron; 2018 Feb; 100():526-532. PubMed ID: 28988027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent silver nanoclusters in hybridized DNA duplexes for the turn-on detection of Hg2+ ions.
    Deng L; Zhou Z; Li J; Li T; Dong S
    Chem Commun (Camb); 2011 Oct; 47(39):11065-7. PubMed ID: 21894320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene oxide quantum dots@silver core-shell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen.
    Pei H; Zhu S; Yang M; Kong R; Zheng Y; Qu F
    Biosens Bioelectron; 2015 Dec; 74():909-14. PubMed ID: 26257182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence Detection of p-Nitrophenol in Water Using Bovine Serum Albumin Capped ag Nanoclusters.
    Mao M; Deng C; He Y; Ge Y; Song G
    J Fluoresc; 2017 Jul; 27(4):1421-1426. PubMed ID: 28401411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.