BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 30472909)

  • 1. LimoRhyde: A Flexible Approach for Differential Analysis of Rhythmic Transcriptome Data.
    Singer JM; Hughey JJ
    J Biol Rhythms; 2019 Feb; 34(1):5-18. PubMed ID: 30472909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Likelihood-based tests for detecting circadian rhythmicity and differential circadian patterns in transcriptomic applications.
    Ding H; Meng L; Liu AC; Gumz ML; Bryant AJ; Mcclung CA; Tseng GC; Esser KA; Huo Z
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34117739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diurnal and circadian rhythmicity of the human blood transcriptome overlaps with organ- and tissue-specific expression of a non-human primate.
    Möller-Levet CS; Laing EE; Archer SN; Dijk DJ
    BMC Biol; 2022 Mar; 20(1):63. PubMed ID: 35264172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LimoRhyde2: Genomic analysis of biological rhythms based on effect sizes.
    Obodo D; Outland EH; Hughey JJ
    PLoS One; 2023; 18(12):e0292089. PubMed ID: 38096249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods detecting rhythmic gene expression are biologically relevant only for strong signal.
    Laloum D; Robinson-Rechavi M
    PLoS Comput Biol; 2020 Mar; 16(3):e1007666. PubMed ID: 32182235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental design and power calculation in omics circadian rhythmicity detection using the cosinor model.
    Zong W; Seney ML; Ketchesin KD; Gorczyca MT; Liu AC; Esser KA; Tseng GC; McClung CA; Huo Z
    Stat Med; 2023 Aug; 42(18):3236-3258. PubMed ID: 37265194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The SCN Clock Governs Circadian Transcription Rhythms in Murine Epididymal White Adipose Tissue.
    Kolbe I; Husse J; Salinas G; Lingner T; Astiz M; Oster H
    J Biol Rhythms; 2016 Dec; 31(6):577-587. PubMed ID: 27650461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames.
    Janich P; Arpat AB; Castelo-Szekely V; Lopes M; Gatfield D
    Genome Res; 2015 Dec; 25(12):1848-59. PubMed ID: 26486724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Phase-Shifting Effect of Bright Light Exposure on Circadian Rhythmicity in the Human Transcriptome.
    Kervezee L; Cuesta M; Cermakian N; Boivin DB
    J Biol Rhythms; 2019 Feb; 34(1):84-97. PubMed ID: 30621487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collecting mouse livers for transcriptome analysis of daily rhythms.
    Mortimer T; Welz PS; Benitah SA; Koronowski KB
    STAR Protoc; 2021 Jun; 2(2):100539. PubMed ID: 34036284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How sleep and wakefulness influence circadian rhythmicity: effects of insufficient and mistimed sleep on the animal and human transcriptome.
    Archer SN; Oster H
    J Sleep Res; 2015 Oct; 24(5):476-93. PubMed ID: 26059855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian Gene Expression Rhythms During Critical Illness.
    Maas MB; Iwanaszko M; Lizza BD; Reid KJ; Braun RI; Zee PC
    Crit Care Med; 2020 Dec; 48(12):e1294-e1299. PubMed ID: 33031153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulated night shift work induces circadian misalignment of the human peripheral blood mononuclear cell transcriptome.
    Kervezee L; Cuesta M; Cermakian N; Boivin DB
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5540-5545. PubMed ID: 29735673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LimoRhyde2: genomic analysis of biological rhythms based on effect sizes.
    Obodo D; Outland EH; Hughey JJ
    bioRxiv; 2023 Feb; ():. PubMed ID: 36778295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of five methods for genome-wide circadian gene identification.
    Wu G; Zhu J; Yu J; Zhou L; Huang JZ; Zhang Z
    J Biol Rhythms; 2014 Aug; 29(4):231-42. PubMed ID: 25238853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian rhythmicity in murine pre-adipocyte and adipocyte cells.
    Otway DT; Frost G; Johnston JD
    Chronobiol Int; 2009 Oct; 26(7):1340-54. PubMed ID: 19916835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A database of circadian and diel rhythmic gene expression in the yellow fever mosquito Aedes aegypti.
    Leming MT; Rund SS; Behura SK; Duffield GE; O'Tousa JE
    BMC Genomics; 2014 Dec; 15(1):1128. PubMed ID: 25516260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian profiling of the transcriptome in NIH/3T3 fibroblasts: comparison with rhythmic gene expression in SCN2.2 cells and the rat SCN.
    Menger GJ; Allen GC; Neuendorff N; Nahm SS; Thomas TL; Cassone VM; Earnest DJ
    Physiol Genomics; 2007 May; 29(3):280-9. PubMed ID: 17284666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translational contributions to tissue specificity in rhythmic and constitutive gene expression.
    Castelo-Szekely V; Arpat AB; Janich P; Gatfield D
    Genome Biol; 2017 Jun; 18(1):116. PubMed ID: 28622766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In the Driver's Seat: The Case for Transcriptional Regulation and Coupling as Relevant Determinants of the Circadian Transcriptome and Proteome in Eukaryotes.
    Montenegro-Montero A; Larrondo LF
    J Biol Rhythms; 2016 Feb; 31(1):37-47. PubMed ID: 26446874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.