These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 30472988)
1. Estimating Metabolic Equilibrium Constants: Progress and Future Challenges. Du B; Zielinski DC; Palsson BO Trends Biochem Sci; 2018 Dec; 43(12):960-969. PubMed ID: 30472988 [TBL] [Abstract][Full Text] [Related]
2. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints. Liebermeister W; Klipp E Theor Biol Med Model; 2006 Dec; 3():41. PubMed ID: 17173669 [TBL] [Abstract][Full Text] [Related]
3. Enzymatic reaction rate limits with constraints on equilibrium constants and experimental parameters. Bish DR; Mavrovouniotis ML Biosystems; 1998; 47(1-2):37-60. PubMed ID: 9715750 [TBL] [Abstract][Full Text] [Related]
4. Temperature-Dependent Estimation of Gibbs Energies Using an Updated Group-Contribution Method. Du B; Zhang Z; Grubner S; Yurkovich JT; Palsson BO; Zielinski DC Biophys J; 2018 Jun; 114(11):2691-2702. PubMed ID: 29874618 [TBL] [Abstract][Full Text] [Related]
5. Quantum chemical approach to estimating the thermodynamics of metabolic reactions. Jinich A; Rappoport D; Dunn I; Sanchez-Lengeling B; Olivares-Amaya R; Noor E; Even AB; Aspuru-Guzik A Sci Rep; 2014 Nov; 4():7022. PubMed ID: 25387603 [TBL] [Abstract][Full Text] [Related]
6. Levels of thermodynamic treatment of biochemical reaction systems. Alberty RA Biophys J; 1993 Sep; 65(3):1243-54. PubMed ID: 8241405 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamically consistent model calibration in chemical kinetics. Jenkinson G; Goutsias J BMC Syst Biol; 2011 May; 5():64. PubMed ID: 21548948 [TBL] [Abstract][Full Text] [Related]
12. THERM: a computer code for estimating thermodynamic properties for species important to combustion and reaction modeling. Ritter ER J Chem Inf Comput Sci; 1991 Aug; 31(3):400-8. PubMed ID: 1939398 [TBL] [Abstract][Full Text] [Related]
13. Calculation of standard transformed Gibbs energies and standard transformed enthalpies of biochemical reactants. Alberty RA Arch Biochem Biophys; 1998 May; 353(1):116-30. PubMed ID: 9578607 [TBL] [Abstract][Full Text] [Related]
14. Biochemical thermodynamics: applications of Mathematica. Alberty RA Methods Biochem Anal; 2006; 48():1-458. PubMed ID: 16878778 [TBL] [Abstract][Full Text] [Related]
15. Estimation of equilibrium constants using automated group contribution methods. Forsythe RG; Karp PD; Mavrovouniotis ML Comput Appl Biosci; 1997 Oct; 13(5):537-43. PubMed ID: 9367126 [TBL] [Abstract][Full Text] [Related]
16. Using UCODE_2005 and PHREEQC to determine thermodynamic constants from experimental data. Skold ME; Thyne GD; McCray JE Ground Water; 2007; 45(3):368-73. PubMed ID: 17470126 [TBL] [Abstract][Full Text] [Related]
17. Thermodynamic Analysis of Chemically Reacting Mixtures-Comparison of First and Second Order Models. PekaĆ M Front Chem; 2018; 6():35. PubMed ID: 29546040 [TBL] [Abstract][Full Text] [Related]
18. Apparent equilibrium constants and standard transformed Gibbs energies of biochemical reactions involving carbon dioxide. Alberty RA Arch Biochem Biophys; 1997 Dec; 348(1):116-24. PubMed ID: 9390181 [TBL] [Abstract][Full Text] [Related]
19. ThermoData Engine (TDE): software implementation of the dynamic data evaluation concept. 9. Extensible thermodynamic constraints for pure compounds and new model developments. Diky V; Chirico RD; Muzny CD; Kazakov AF; Kroenlein K; Magee JW; Abdulagatov I; Frenkel M J Chem Inf Model; 2013 Dec; 53(12):3418-30. PubMed ID: 24245860 [TBL] [Abstract][Full Text] [Related]
20. The importance of thermodynamic equilibrium for high throughput gene expression arrays. Bhanot G; Louzoun Y; Zhu J; DeLisi C Biophys J; 2003 Jan; 84(1):124-35. PubMed ID: 12524270 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]