These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30473068)

  • 1. Modular microfluidics for double emulsion formation.
    Thompson B; Movsesian N; Cheng C; Karandikar P; Gupta M; Malmstadt N
    Methods Cell Biol; 2018; 148():161-176. PubMed ID: 30473068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From microdroplets to microfluidics: selective emulsion separation in microfluidic devices.
    Fidalgo LM; Whyte G; Bratton D; Kaminski CF; Abell C; Huck WT
    Angew Chem Int Ed Engl; 2008; 47(11):2042-5. PubMed ID: 18264960
    [No Abstract]   [Full Text] [Related]  

  • 3. Plug-n-play microfluidic systems from flexible assembly of glass-based flow-control modules.
    Meng ZJ; Wang W; Liang X; Zheng WC; Deng NN; Xie R; Ju XJ; Liu Z; Chu LY
    Lab Chip; 2015 Apr; 15(8):1869-78. PubMed ID: 25711675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High throughput production of single core double emulsions in a parallelized microfluidic device.
    Romanowsky MB; Abate AR; Rotem A; Holtze C; Weitz DA
    Lab Chip; 2012 Feb; 12(4):802-7. PubMed ID: 22222423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated microfluidic system with simultaneous emulsion generation and concentration.
    Koppula KS; Fan R; Veerapalli KR; Wan J
    J Colloid Interface Sci; 2016 Mar; 466():162-7. PubMed ID: 26722797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic fabrication of perfluorohexane-shelled double emulsions for controlled loading and acoustic-triggered release of hydrophilic agents.
    Duncanson WJ; Arriaga LR; Ung WL; Kopechek JA; Porter TM; Weitz DA
    Langmuir; 2014 Nov; 30(46):13765-70. PubMed ID: 25340527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double Emulsion Generation Using a Polydimethylsiloxane (PDMS) Co-axial Flow Focus Device.
    Cole RH; Tran TM; Abate AR
    J Vis Exp; 2015 Dec; (106):e53516. PubMed ID: 26780079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled formation of double-emulsion drops in sudden expansion channels.
    Kim SH; Kim B
    J Colloid Interface Sci; 2014 Feb; 415():26-31. PubMed ID: 24267326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes.
    Wang CK; Liao WH; Wu HM; Tung YC
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30272670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.
    Lai CW; Lin YH; Lee GB
    Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electro-coalescence chip for effective emulsion breaking in droplet microfluidics.
    Chokkalingam V; Ma Y; Thiele J; Schalk W; Tel J; Huck WT
    Lab Chip; 2014 Jul; 14(14):2398-402. PubMed ID: 24889537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A versatile platform for surface modification of microfluidic droplets.
    Li M; Jiang W; Chen Z; Suryaprakash S; Lv S; Tang Z; Chen X; Leong KW
    Lab Chip; 2017 Feb; 17(4):635-639. PubMed ID: 28154857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double emulsions from a capillary array injection microfluidic device.
    Shang L; Cheng Y; Wang J; Ding H; Rong F; Zhao Y; Gu Z
    Lab Chip; 2014 Sep; 14(18):3489-93. PubMed ID: 25025688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drop formation in non-planar microfluidic devices.
    Rotem A; Abate AR; Utada AS; Van Steijn V; Weitz DA
    Lab Chip; 2012 Nov; 12(21):4263-8. PubMed ID: 22864475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-talk between emulsion drops: how are hydrophilic reagents transported across oil phases?
    Etienne G; Vian A; Biočanin M; Deplancke B; Amstad E
    Lab Chip; 2018 Dec; 18(24):3903-3912. PubMed ID: 30465575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-step formation of multiple emulsions in microfluidics.
    Abate AR; Thiele J; Weitz DA
    Lab Chip; 2011 Jan; 11(2):253-8. PubMed ID: 20967395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial tension controlled W/O and O/W 2-phase flows in microchannel.
    Shui L; van den Berg A; Eijkel JC
    Lab Chip; 2009 Mar; 9(6):795-801. PubMed ID: 19255661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase.
    Chae SK; Lee CH; Lee SH; Kim TS; Kang JY
    Lab Chip; 2009 Jul; 9(13):1957-61. PubMed ID: 19532972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Throughput Production of Micrometer Sized Double Emulsions and Microgel Capsules in Parallelized 3D Printed Microfluidic Devices.
    Jans A; Lölsberg J; Omidinia-Anarkoli A; Viermann R; Möller M; De Laporte L; Wessling M; Kuehne AJC
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31731709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional patterning of PDMS microfluidic devices using integrated chemo-masks.
    Romanowsky MB; Heymann M; Abate AR; Krummel AT; Fraden S; Weitz DA
    Lab Chip; 2010 Jun; 10(12):1521-4. PubMed ID: 20454730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.