BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

609 related articles for article (PubMed ID: 30473072)

  • 1. Viable cell culture in PDMS-based microfluidic devices.
    Tanyeri M; Tay S
    Methods Cell Biol; 2018; 148():3-33. PubMed ID: 30473072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-macro hybrid soft-lithography master (MMHSM) fabrication for lab-on-a-chip applications.
    Park J; Li J; Han A
    Biomed Microdevices; 2010 Apr; 12(2):345-51. PubMed ID: 20049640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The revolution of PDMS microfluidics in cellular biology.
    Banik S; Uchil A; Kalsang T; Chakrabarty S; Ali MA; Srisungsitthisunti P; Mahato KK; Surdo S; Mazumder N
    Crit Rev Biotechnol; 2023 May; 43(3):465-483. PubMed ID: 35410564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies.
    Sia SK; Whitesides GM
    Electrophoresis; 2003 Nov; 24(21):3563-76. PubMed ID: 14613181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic perfusion culture.
    Hattori K; Sugiura S; Kanamori T
    Methods Mol Biol; 2014; 1104():251-63. PubMed ID: 24297421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of a Microfluidic Cell Culture Device Using Photolithographic and Soft Lithographic Techniques.
    Christoffersson J; Mandenius CF
    Methods Mol Biol; 2019; 1994():227-233. PubMed ID: 31124120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The analytical approach to polydimethylsiloxane microfluidic technology and its biological applications.
    Kartalov EP; Anderson WF; Scherer A
    J Nanosci Nanotechnol; 2006 Aug; 6(8):2265-77. PubMed ID: 17037833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
    Leclerc E; Sakai Y; Fujii T
    Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamentals of microfluidic cell culture in controlled microenvironments.
    Young EW; Beebe DJ
    Chem Soc Rev; 2010 Mar; 39(3):1036-48. PubMed ID: 20179823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane integration into PDMS-free microfluidic platforms for organ-on-chip and analytical chemistry applications.
    Schneider S; Gruner D; Richter A; Loskill P
    Lab Chip; 2021 May; 21(10):1866-1885. PubMed ID: 33949565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices.
    Shakeri A; Khan S; Didar TF
    Lab Chip; 2021 Aug; 21(16):3053-3075. PubMed ID: 34286800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Modification Techniques for Endothelial Cell Seeding in PDMS Microfluidic Devices.
    Akther F; Yakob SB; Nguyen NT; Ta HT
    Biosensors (Basel); 2020 Nov; 10(11):. PubMed ID: 33228050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients.
    Kamei K; Mashimo Y; Koyama Y; Fockenberg C; Nakashima M; Nakajima M; Li J; Chen Y
    Biomed Microdevices; 2015 Apr; 17(2):36. PubMed ID: 25686903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Layer-by-layer Collagen Deposition in Microfluidic Devices for Microtissue Stabilization.
    McCarty WJ; Prodanov L; Bale SS; Bhushan A; Jindal R; Yarmush ML; Usta OB
    J Vis Exp; 2015 Sep; (103):. PubMed ID: 26485274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent methods of droplet microfluidics and their applications in spheroids and organoids.
    Wang Y; Liu M; Zhang Y; Liu H; Han L
    Lab Chip; 2023 Mar; 23(5):1080-1096. PubMed ID: 36628972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The upcoming 3D-printing revolution in microfluidics.
    Bhattacharjee N; Urrios A; Kang S; Folch A
    Lab Chip; 2016 May; 16(10):1720-42. PubMed ID: 27101171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printed mold leachates in PDMS microfluidic devices.
    de Almeida Monteiro Melo Ferraz M; Nagashima JB; Venzac B; Le Gac S; Songsasen N
    Sci Rep; 2020 Jan; 10(1):994. PubMed ID: 31969661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioreactors and Microfluidics for Osteochondral Interface Maturation.
    Canadas RF; Marques AP; Reis RL; Oliveira JM
    Adv Exp Med Biol; 2018; 1059():395-420. PubMed ID: 29736584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D printable acrylate polydimethylsiloxane resins for cell culture and drug testing.
    Villata S; Canta M; Baruffaldi D; Pavan A; Chiappone A; Pirri CF; Frascella F; Roppolo I
    Biomater Sci; 2023 Apr; 11(8):2950-2959. PubMed ID: 36912680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.