BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 30473175)

  • 1. Dispersion in Tissue-Mimicking Gels Measured with Shear Wave Elastography and Torsional Vibration Rheometry.
    Yengul SS; Barbone PE; Madore B
    Ultrasound Med Biol; 2019 Feb; 45(2):586-604. PubMed ID: 30473175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of oil-in-gelatin phantoms for viscoelasticity measurement in ultrasound shear wave elastography.
    Nguyen MM; Zhou S; Robert JL; Shamdasani V; Xie H
    Ultrasound Med Biol; 2014 Jan; 40(1):168-76. PubMed ID: 24139915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelastic properties of soft gels: comparison of magnetic resonance elastography and dynamic shear testing in the shear wave regime.
    Okamoto RJ; Clayton EH; Bayly PV
    Phys Med Biol; 2011 Oct; 56(19):6379-400. PubMed ID: 21908903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical characterization of ex vivo human brain using ultrasound shear wave spectroscopy.
    Nicolas E; Callé S; Nicolle S; Mitton D; Remenieras JP
    Ultrasonics; 2018 Mar; 84():119-125. PubMed ID: 29112910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms.
    Amador C; Urban MW; Chen S; Chen Q; An KN; Greenleaf JF
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1706-14. PubMed ID: 21317078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of viscosity estimation for oil-in-gelatin phantom in shear wave based ultrasound elastography.
    Zhu Y; Dong C; Yin Y; Chen X; Guo Y; Zheng Y; Shen Y; Wang T; Zhang X; Chen S
    Ultrasound Med Biol; 2015 Feb; 41(2):601-9. PubMed ID: 25542484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kelvin-Voigt Parameters Reconstruction of Cervical Tissue-Mimicking Phantoms Using Torsional Wave Elastography.
    Callejas A; Gomez A; Faris IH; Melchor J; Rus G
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31349721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison between shear wave dispersion magneto motive ultrasound and transient elastography for measuring tissue-mimicking phantom viscoelasticity.
    Almeida TW; Sampaio DR; Bruno AC; Pavan TZ; Carneiro AA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2138-45. PubMed ID: 26670853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasound viscoelasticity assessment using an adaptive torsional shear wave propagation method.
    Ouared A; Kazemirad S; Montagnon E; Cloutier G
    Med Phys; 2016 Apr; 43(4):1603. PubMed ID: 27036560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arterial Stiffness Estimation by Shear Wave Elastography: Validation in Phantoms with Mechanical Testing.
    Maksuti E; Widman E; Larsson D; Urban MW; Larsson M; Bjällmark A
    Ultrasound Med Biol; 2016 Jan; 42(1):308-21. PubMed ID: 26454623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of five viscoelastic models for estimating viscoelastic parameters using ultrasound shear wave elastography.
    Zhou B; Zhang X
    J Mech Behav Biomed Mater; 2018 Sep; 85():109-116. PubMed ID: 29879581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic quantification of differences in shear wave elastography estimates between linear-elastic and viscoelastic material assumptionsa).
    Bisht SR; Paul A; Patel P; Thareja P; Mercado-Shekhar KP
    J Acoust Soc Am; 2024 Mar; 155(3):2025-2036. PubMed ID: 38470185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.
    Amador C; Urban MW; Chen S; Greenleaf JF
    Phys Med Biol; 2012 Mar; 57(5):1263-82. PubMed ID: 22345425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear wave speed and dispersion measurements using crawling wave chirps.
    Hah Z; Partin A; Parker KJ
    Ultrason Imaging; 2014 Oct; 36(4):277-90. PubMed ID: 24658144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of four different techniques to evaluate the elastic properties of phantom in elastography: is there a gold standard?
    Oudry J; Lynch T; Vappou J; Sandrin L; Miette V
    Phys Med Biol; 2014 Oct; 59(19):5775-93. PubMed ID: 25208061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indentation Measurements to Validate Dynamic Elasticity Imaging Methods.
    Altahhan KN; Wang Y; Sobh N; Insana MF
    Ultrason Imaging; 2016 Sep; 38(5):332-45. PubMed ID: 26376923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validity of measurement of shear modulus by ultrasound shear wave elastography in human pennate muscle.
    Miyamoto N; Hirata K; Kanehisa H; Yoshitake Y
    PLoS One; 2015; 10(4):e0124311. PubMed ID: 25853777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of a forward model of axisymmetric shear wave propagation in viscoelastic media to shear wave elastography.
    Yengul SS; Barbone PE; Madore B
    J Acoust Soc Am; 2018 Jun; 143(6):3266. PubMed ID: 29960488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous magnetic resonance and optical elastography acquisitions: Comparison of displacement images and shear modulus estimations using a single vibration source.
    Brinker ST; Kearney SP; Royston TJ; Klatt D
    J Mech Behav Biomed Mater; 2018 Aug; 84():135-144. PubMed ID: 29775815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probe Oscillation Shear Elastography (PROSE): A High Frame-Rate Method for Two-Dimensional Ultrasound Shear Wave Elastography.
    Mellema DC; Song P; Kinnick RR; Urban MW; Greenleaf JF; Manduca A; Chen S
    IEEE Trans Med Imaging; 2016 Sep; 35(9):2098-106. PubMed ID: 27076352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.