These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 3047323)

  • 1. Structural components in the synaptic cleft captured by freeze-substitution and deep etching of directly frozen cerebellar cortex.
    Ichimura T; Hashimoto PH
    J Neurocytol; 1988 Feb; 17(1):3-12. PubMed ID: 3047323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freeze-fracture scanning electron microscopy and comparative freeze-etching study of parallel fiber-Purkinje spine synapses of vertebrate cerebellar cortex.
    Castejón OJ
    J Submicrosc Cytol Pathol; 1990 Apr; 22(2):281-95. PubMed ID: 2337890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conventional and high resolution field emission scanning electron microscopy of vertebrate cerebellar parallel fiber-Purkinje spine synapses.
    Castejón OJ; Apkarian RP
    Cell Mol Biol (Noisy-le-grand); 1993 Dec; 39(8):863-73. PubMed ID: 8298435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructure of the synaptic ribbons in photoreceptor cells of Rana catesbeiana revealed by freeze-etching and freeze-substitution.
    Usukura J; Yamada E
    Cell Tissue Res; 1987 Mar; 247(3):483-8. PubMed ID: 3494517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytoplasmic actomyosin fibrils after preservation with high pressure freezing.
    Wolf KV; Stockem W; Wohlfarth-Bottermann KE
    Cell Tissue Res; 1981; 217(3):479-95. PubMed ID: 7195774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New structural features of synapses in the anteroventral cochlear nucleus prepared by direct freezing and freeze-substitution.
    Tatsuoka H; Reese TS
    J Comp Neurol; 1989 Dec; 290(3):343-57. PubMed ID: 2592616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The arrangement of actin filaments in the postsynaptic cytoplasm of the cerebellar cortex revealed by quick-freeze deep-etch electron microscopy.
    Hirokawa N
    Neurosci Res; 1989 Feb; 6(3):269-75. PubMed ID: 2710429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organization of acetylcholine receptors in quick-frozen, deep-etched, and rotary-replicated Torpedo postsynaptic membrane.
    Heuser JE; Salpeter SR
    J Cell Biol; 1979 Jul; 82(1):150-73. PubMed ID: 479296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional supramolecular organization of the extracellular matrix in human and rabbit corneal stroma, as revealed by ultrarapid-freezing and deep-etching methods.
    Hirsch M; Prenant G; Renard G
    Exp Eye Res; 2001 Feb; 72(2):123-35. PubMed ID: 11161728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conventional and high resolution scanning electron microscopy of outer and inner surface features of cerebellar nerve cells.
    Castejón OJ; Apkarian RP
    J Submicrosc Cytol Pathol; 1992 Oct; 24(4):549-62. PubMed ID: 1458441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freeze-etching study of the axosomatic synapses in the rat sensorimotor cortex.
    Bozhilova-Pastirova A
    Eur J Morphol; 1998 Jul; 36(3):189-200. PubMed ID: 9845265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scanning electron microscope, freeze etching and glycosaminoglycan cytochemical studies of the cerebellar climbing fiber system.
    Castejón OJ; Castejón HV
    Scanning Microsc; 1988 Dec; 2(4):2181-93. PubMed ID: 2467357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the synaptic junctions in the rat sensorimotor cortex. Freeze-etching study of axodendritic synapses.
    Bozhilova-Pastirova A; Ovtscharoff W
    Eur J Morphol; 1996 Dec; 34(5):363-73. PubMed ID: 9034792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of synaptic junctions in cerebellar glomeruli.
    Landis DM; Weinstein LA; Halperin JJ
    Brain Res; 1983 Jun; 284(2-3):231-45. PubMed ID: 6871725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytoplasmic organization in cerebellar dendritic spines.
    Landis DM; Reese TS
    J Cell Biol; 1983 Oct; 97(4):1169-78. PubMed ID: 6684661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rough surfaced smooth endoplasmic reticulum in rat and mouse cerebellar Purkinje cells visualized by quick-freezing techniques.
    Kanaseki T; Ikeuchi Y; Tashiro Y
    Cell Struct Funct; 1998 Dec; 23(6):373-87. PubMed ID: 10206740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytoskeletal organization at the postsynaptic complex.
    Gulley RL; Reese TS
    J Cell Biol; 1981 Oct; 91(1):298-302. PubMed ID: 7197681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional ultrastructure of anionic sites of the glomerular basement membrane by a quick-freezing and deep-etching method using a cationic tracer.
    Yoshimura A; Ohno S; Nakano K; Oniki H; Inui K; Ideura T; Koshikawa S
    Histochemistry; 1991; 96(2):107-13. PubMed ID: 1917567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are the pores of intramembrane particles of postsynaptic membrane transmitter-dependent channels?
    Cuevas P; Gutierrez Diaz JA; Reimers D
    Experientia; 1983 Jun; 39(6):596-8. PubMed ID: 6303834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface and membrane morphology of Bergmann glial cells and their topographic relationships in the cerebellar molecular layer.
    Castejón OJ
    J Submicrosc Cytol Pathol; 1990 Jan; 22(1):123-34. PubMed ID: 2311096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.