BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30473738)

  • 1.
    Lambert LM; Pipinos II; Baxter BT; Chatzizisis YS; Ryu SJ; Leighton RI; Wei T
    Biomicrofluidics; 2018 Nov; 12(6):064101. PubMed ID: 30473738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelial cell morphologic response to asymmetric stenosis hemodynamics: effects of spatial wall shear stress gradients.
    Rouleau L; Farcas M; Tardif JC; Mongrain R; Leask RL
    J Biomech Eng; 2010 Aug; 132(8):081013. PubMed ID: 20670062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells.
    Davies PF; Dewey CF; Bussolari SR; Gordon EJ; Gimbrone MA
    J Clin Invest; 1984 Apr; 73(4):1121-9. PubMed ID: 6707208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional macro-scale assessment of regional and temporal wall shear stress characteristics on aortic valve leaflets.
    Cao K; Bukač M; Sucosky P
    Comput Methods Biomech Biomed Engin; 2016; 19(6):603-13. PubMed ID: 26155915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow bioreactor design for quantitative measurements over endothelial cells using micro-particle image velocimetry.
    Leong CM; Voorhees A; Nackman GB; Wei T
    Rev Sci Instrum; 2013 Apr; 84(4):045109. PubMed ID: 23635234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macrorheology and adaptive microrheology of endothelial cells subjected to fluid shear stress.
    Dangaria JH; Butler PJ
    Am J Physiol Cell Physiol; 2007 Nov; 293(5):C1568-75. PubMed ID: 17670893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human dermal microvascular endothelial cell morphological response to fluid shear stress.
    Polk T; Schmitt S; Aldrich JL; Long DS
    Microvasc Res; 2022 Sep; 143():104377. PubMed ID: 35561754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.
    Raben JS; Hariharan P; Robinson R; Malinauskas R; Vlachos PP
    Cardiovasc Eng Technol; 2016 Mar; 7(1):7-22. PubMed ID: 26628081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-Term Shear Stress Induces Rapid Actin Dynamics in Living Endothelial Cells.
    Choi CK; Helmke BP
    Mol Cell Biomech; 2008 Jan; 5(4):247-258. PubMed ID: 20084179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers.
    Barbee KA; Mundel T; Lal R; Davies PF
    Am J Physiol; 1995 Apr; 268(4 Pt 2):H1765-72. PubMed ID: 7733381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear stress gradient over endothelial cells in a curved microchannel system.
    Frame MD; Chapman GB; Makino Y; Sarelius IH
    Biorheology; 1998; 35(4-5):245-61. PubMed ID: 10474653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle tracking techniques for electrokinetic microchannel flows.
    Devasenathipathy S; Santiago JG; Takehara K
    Anal Chem; 2002 Aug; 74(15):3704-13. PubMed ID: 12175157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional microfluidic collagen hydrogels for investigating flow-mediated tumor-endothelial signaling and vascular organization.
    Buchanan CF; Voigt EE; Szot CS; Freeman JW; Vlachos PP; Rylander MN
    Tissue Eng Part C Methods; 2014 Jan; 20(1):64-75. PubMed ID: 23730946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An In Vitro Hemodynamic Flow System to Study the Effects of Quantified Shear Stresses on Endothelial Cells.
    Avari H; Savory E; Rogers KA
    Cardiovasc Eng Technol; 2016 Mar; 7(1):44-57. PubMed ID: 26621672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels.
    Gojova A; Barakat AI
    J Appl Physiol (1985); 2005 Jun; 98(6):2355-62. PubMed ID: 15705727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dynamic response of vascular endothelial cells to fluid shear stress.
    Dewey CF; Bussolari SR; Gimbrone MA; Davies PF
    J Biomech Eng; 1981 Aug; 103(3):177-85. PubMed ID: 7278196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton.
    Galbraith CG; Skalak R; Chien S
    Cell Motil Cytoskeleton; 1998; 40(4):317-30. PubMed ID: 9712262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in organization and composition of the extracellular matrix underlying cultured endothelial cells exposed to laminar steady shear stress.
    Thoumine O; Nerem RM; Girard PR
    Lab Invest; 1995 Oct; 73(4):565-76. PubMed ID: 7474929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluid shear stress differentially modulates expression of genes encoding basic fibroblast growth factor and platelet-derived growth factor B chain in vascular endothelium.
    Malek AM; Gibbons GH; Dzau VJ; Izumo S
    J Clin Invest; 1993 Oct; 92(4):2013-21. PubMed ID: 8408655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A numerical analysis of forces exerted by laminar flow on spreading cells in a parallel plate flow chamber assay.
    Olivier LA; Truskey GA
    Biotechnol Bioeng; 1993 Oct; 42(8):963-73. PubMed ID: 18613145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.