These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30473738)

  • 41. Estimation of wall shear stress dynamic fluctuations in intracranial atherosclerotic lesions using computational fluid dynamics.
    Schirmer CM; Malek AM
    Neurosurgery; 2008 Aug; 63(2):326-34; discussion 334-5. PubMed ID: 18797363
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microvascular endothelial cells migrate upstream and align against the shear stress field created by impinging flow.
    Ostrowski MA; Huang NF; Walker TW; Verwijlen T; Poplawski C; Khoo AS; Cooke JP; Fuller GG; Dunn AR
    Biophys J; 2014 Jan; 106(2):366-74. PubMed ID: 24461011
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modulation by pathophysiological stimuli of the shear stress-induced up-regulation of endothelial nitric oxide synthase expression in endothelial cells.
    Malek AM; Izumo S; Alper SL
    Neurosurgery; 1999 Aug; 45(2):334-44; discussion 344-5. PubMed ID: 10449079
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Steady unidirectional laminar flow inhibits monolayer formation by human and rat microvascular endothelial cells.
    Rezvan A; Allen FD; Lelkes PI
    Endothelium; 2004; 11(1):11-6. PubMed ID: 15203875
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Micropatterned structural control suppresses mechanotaxis of endothelial cells.
    Lin X; Helmke BP
    Biophys J; 2008 Sep; 95(6):3066-78. PubMed ID: 18586851
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Real-time quantification of endothelial response to shear stress and vascular modulators.
    DeStefano JG; Williams A; Wnorowski A; Yimam N; Searson PC; Wong AD
    Integr Biol (Camb); 2017 Apr; 9(4):362-374. PubMed ID: 28345713
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synergistic effects of fluid shear stress and cyclic circumferential stretch on vascular endothelial cell morphology and cytoskeleton.
    Zhao S; Suciu A; Ziegler T; Moore JE; Bürki E; Meister JJ; Brunner HR
    Arterioscler Thromb Vasc Biol; 1995 Oct; 15(10):1781-6. PubMed ID: 7583556
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of shear stress on water and LDL transport through cultured endothelial cell monolayers.
    Kang H; Cancel LM; Tarbell JM
    Atherosclerosis; 2014 Apr; 233(2):682-690. PubMed ID: 24583416
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Human brain microvascular endothelial cells resist elongation due to shear stress.
    Reinitz A; DeStefano J; Ye M; Wong AD; Searson PC
    Microvasc Res; 2015 May; 99():8-18. PubMed ID: 25725258
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Physiological fluid shear stress causes downregulation of endothelin-1 mRNA in bovine aortic endothelium.
    Malek A; Izumo S
    Am J Physiol; 1992 Aug; 263(2 Pt 1):C389-96. PubMed ID: 1514586
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Finite-element stress analysis of a multicomponent model of sheared and focally-adhered endothelial cells.
    Ferko MC; Bhatnagar A; Garcia MB; Butler PJ
    Ann Biomed Eng; 2007 Feb; 35(2):208-23. PubMed ID: 17160699
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Direct current electric field regulates endothelial permeability under physiologically relevant fluid forces in a microfluidic vessel bifurcation model.
    Mohana Sundaram P; Rangharajan KK; Akbari E; Hadick TJ; Song JW; Prakash S
    Lab Chip; 2021 Jan; 21(2):319-330. PubMed ID: 33319218
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design of a cone-and-plate device for controlled realistic shear stress stimulation on endothelial cell monolayers.
    Franzoni M; Cattaneo I; Ene-Iordache B; Oldani A; Righettini P; Remuzzi A
    Cytotechnology; 2016 Oct; 68(5):1885-96. PubMed ID: 26754843
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hemodynamic and morphological characteristics of a growing cerebral aneurysm.
    Dabagh M; Nair P; Gounley J; Frakes D; Gonzalez LF; Randles A
    Neurosurg Focus; 2019 Jul; 47(1):E13. PubMed ID: 31261117
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of Particle Migration on the Stress Field in Microfluidic Flows of Blood Analog Fluids at High Reynolds Numbers.
    Knüppel F; Sun A; Wurm FH; Hussong J; Torner B
    Micromachines (Basel); 2023 Jul; 14(8):. PubMed ID: 37630030
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Variations in mass transfer to single endothelial cells.
    Van Doormaal MA; Zhang J; Wada S; Shaw JE; Won D; Cybulsky MI; Yip CM; Ethier CR
    Biomech Model Mechanobiol; 2009 Jun; 8(3):183-93. PubMed ID: 18568449
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Micro particle image velocimetry measurements of steady diastolic leakage flow in the hinge of a St. Jude Medical® regent™ mechanical heart valve.
    Jun BH; Saikrishnan N; Yoganathan AP
    Ann Biomed Eng; 2014 Mar; 42(3):526-40. PubMed ID: 24085344
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy.
    Barbee KA; Davies PF; Lal R
    Circ Res; 1994 Jan; 74(1):163-71. PubMed ID: 8261591
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A simple microfluidic device to study cell-scale endothelial mechanotransduction.
    Lafaurie-Janvore J; Antoine EE; Perkins SJ; Babataheri A; Barakat AI
    Biomed Microdevices; 2016 Aug; 18(4):63. PubMed ID: 27402497
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An orbital shear platform for real-time, in vitro endothelium characterization.
    Velasco V; Gruenthal M; Zusstone E; Thomas JM; Berson RE; Keynton RS; Williams SJ
    Biotechnol Bioeng; 2016 Jun; 113(6):1336-44. PubMed ID: 26615057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.