These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 30473796)

  • 61. Improvement of Gas-Sensing Performance of Large-Area Tungsten Disulfide Nanosheets by Surface Functionalization.
    Ko KY; Song JG; Kim Y; Choi T; Shin S; Lee CW; Lee K; Koo J; Lee H; Kim J; Lee T; Park J; Kim H
    ACS Nano; 2016 Oct; 10(10):9287-9296. PubMed ID: 27666720
    [TBL] [Abstract][Full Text] [Related]  

  • 62. CuBi
    Choi YH; Kim DH; Hong SH
    ACS Appl Mater Interfaces; 2018 May; 10(17):14901-14913. PubMed ID: 29638109
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Influence of Synthesis Conditions on Microstructure and NO₂ Sensing Properties of WO₃ Porous Films Synthesized by Non-Hydrolytic Sol⁻Gel Method.
    Zhao S; Shen Y; Zhou P; Li G; Han C; Wei D; Zhong X; Zhang Y; Ao Y
    Nanomaterials (Basel); 2018 Dec; 9(1):. PubMed ID: 30577653
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Material and sensing properties of Pd-deposited WO3 thin films.
    Choi G; Jin G; Park SH; Lee W; Park J
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3841-6. PubMed ID: 18047071
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Influence of annealing temperature of WO3 in photoelectrochemical conversion and energy storage for water splitting.
    Ng C; Ng YH; Iwase A; Amal R
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5269-75. PubMed ID: 23731030
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Flame Spray Pyrolysis Synthesis of WO
    Wu C; Zhang Y; Yang L; Xiao B; Jiao A; Li K; Chen T; Huang Z; Lin H
    Langmuir; 2022 Dec; 38(50):15506-15515. PubMed ID: 36480753
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Characteristics of Highly Sensitive Hydrogen Sensor Based on Pt-WO
    Matsuura S; Yamasaku N; Nishijima Y; Okazaki S; Arakawa T
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877934
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Research Progress of Gas Sensing Performance of 2D Hexagonal WO
    Li Y; Zhou Q; Ding S; Wu Z
    Front Chem; 2021; 9():786607. PubMed ID: 34938719
    [TBL] [Abstract][Full Text] [Related]  

  • 69. High Performance Acetylene Sensor with Heterostructure Based on WO₃ Nanolamellae/Reduced Graphene Oxide (rGO) Nanosheets Operating at Low Temperature.
    Jiang Z; Chen W; Jin L; Cui F; Song Z; Zhu C
    Nanomaterials (Basel); 2018 Nov; 8(11):. PubMed ID: 30400651
    [TBL] [Abstract][Full Text] [Related]  

  • 70. H2 sensing properties of pd modified WO3-Fe2O3 nanostructured composite films prepared by amorphous W-Fe dealloying.
    Gao W; Wu G; Ling Y; Sun J
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1190-3. PubMed ID: 23646600
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Enhanced nitrogen oxide sensing performance based on tin-doped tungsten oxide nanoplates by a hydrothermal method.
    Wang C; Guo L; Xie N; Kou X; Sun Y; Chuai X; Zhang S; Song H; Wang Y; Lu G
    J Colloid Interface Sci; 2018 Feb; 512():740-749. PubMed ID: 29107925
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Ultrathin WO
    Li H; Wu G; Wu J; Shen J; Chen L; Zhang J; Mao Y; Cheng H; Zhang M; Ma Q; Zheng Y
    ACS Sens; 2024 Jun; ():. PubMed ID: 38918891
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of (100) and (001) Hexagonal
    O Abe O; Qiu Z; R Jinschek J; Gouma PI
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33804499
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Humidity-tolerant and highly sensitive gas sensor for hydrogen sulfide based on WO
    Deng Z; Wu Z; Liu X; Chen Z; Sun Y; Dai N; Ge M
    RSC Adv; 2024 May; 14(21):15039-15047. PubMed ID: 38720982
    [TBL] [Abstract][Full Text] [Related]  

  • 75. High-temperature NO sensing performance of WO
    Lontio Fomekong R; Saruhan B; Debliquy M; Lahem D
    RSC Adv; 2022 Aug; 12(34):22064-22069. PubMed ID: 36043074
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Temperature-Controlled Transformation of WO
    Chandra D; Katsuki T; Tanahashi Y; Togashi T; Tsubonouchi Y; Hoshino N; Zahran ZN; Yagi M
    ACS Appl Mater Interfaces; 2023 May; 15(17):20885-20896. PubMed ID: 37083342
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Acetylene Gas-Sensing Properties of Layer-by-Layer Self-Assembled Ag-Decorated Tin Dioxide/Graphene Nanocomposite Film.
    Jiang C; Zhang D; Yin N; Yao Y; Shaymurat T; Zhou X
    Nanomaterials (Basel); 2017 Sep; 7(9):. PubMed ID: 28927021
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Enhanced ethanol sensing properties of WO
    Abdikadyr B; Kiliç A; Alev O; Büyükköse S; Öztürk ZZ
    Turk J Chem; 2021; 45(2):295-306. PubMed ID: 34104045
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Thermal effects associated with the Raman spectroscopy of WO3 gas-sensor materials.
    Garcia-Sanchez RF; Ahmido T; Casimir D; Baliga S; Misra P
    J Phys Chem A; 2013 Dec; 117(50):13825-31. PubMed ID: 24087971
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Hierarchical nanostructured WO3-SnO2 for selective sensing of volatile organic compounds.
    Nayak AK; Ghosh R; Santra S; Guha PK; Pradhan D
    Nanoscale; 2015 Aug; 7(29):12460-73. PubMed ID: 26134476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.