These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30473830)

  • 1. Characterizing the shape patterns of dimorphic yeast pseudohyphae.
    Gontar A; Bottema MJ; Binder BJ; Tronnolone H
    R Soc Open Sci; 2018 Oct; 5(10):180820. PubMed ID: 30473830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying the dominant growth mechanisms of dimorphic yeast using a lattice-based model.
    Tronnolone H; Gardner JM; Sundstrom JF; Jiranek V; Oliver SG; Binder BJ
    J R Soc Interface; 2017 Sep; 14(134):. PubMed ID: 28954849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A putative phospholipase C is involved in Pichia fermentans dimorphic transition.
    Sanna ML; Zara G; Zara S; Migheli Q; Budroni M; Mannazzu I
    Biochim Biophys Acta; 2014 Jan; 1840(1):344-9. PubMed ID: 24076234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase-specific protein expression in the dimorphic yeast Saccharomyces cerevisiae.
    Viard B; Kuriyama H
    Biochem Biophys Res Commun; 1997 Apr; 233(2):480-6. PubMed ID: 9144562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS.
    Gimeno CJ; Ljungdahl PO; Styles CA; Fink GR
    Cell; 1992 Mar; 68(6):1077-90. PubMed ID: 1547504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudohyphal growth of Cryptococcus neoformans is a reversible dimorphic transition in response to ammonium that requires Amt1 and Amt2 ammonium permeases.
    Lee SC; Phadke S; Sun S; Heitman J
    Eukaryot Cell; 2012 Nov; 11(11):1391-8. PubMed ID: 23002105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Pathogenic Yeast Candida parapsilosis Forms Pseudohyphae through Different Signaling Pathways Depending on the Available Carbon Source.
    Rupert CB; Rusche LN
    mSphere; 2022 Jun; 7(3):e0002922. PubMed ID: 35766504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of superficial pseudohyphal growth by overexpression of the SFG1 gene in yeast Saccharomyces cerevisiae.
    Fujita A; Hiroko T; Hiroko F; Oka C
    Gene; 2005 Dec; 363():97-104. PubMed ID: 16289536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth.
    Liu H; Styles CA; Fink GR
    Genetics; 1996 Nov; 144(3):967-78. PubMed ID: 8913742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of dimorphism in Saccharomyces cerevisiae: involvement of the novel protein kinase homolog Elm1p and protein phosphatase 2A.
    Blacketer MJ; Koehler CM; Coats SG; Myers AM; Madaule P
    Mol Cell Biol; 1993 Sep; 13(9):5567-81. PubMed ID: 8395007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Saccharomyces cerevisiae natural populations for pseudohyphal growth and colony morphology.
    Casalone E; Barberio C; Cappellini L; Polsinelli M
    Res Microbiol; 2005 Mar; 156(2):191-200. PubMed ID: 15748984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of EPD1, an essential gene for pseudohyphal growth of a dimorphic yeast, Candida maltosa.
    Nakazawa T; Horiuchi H; Ohta A; Takagi M
    J Bacteriol; 1998 Apr; 180(8):2079-86. PubMed ID: 9555889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphometric quantification of a pseudohyphae forming Saccharomyces cerevisiae strain using in situ microscopy and image analysis.
    Belini VL; Junior OM; Ceccato-Antonini SR; Suhr H; Wiedemann P
    J Microbiol Methods; 2021 Nov; 190():106338. PubMed ID: 34597736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Messengers for morphogenesis: inositol polyphosphate signaling and yeast pseudohyphal growth.
    Mutlu N; Kumar A
    Curr Genet; 2019 Feb; 65(1):119-125. PubMed ID: 30101372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pichia fermentans dimorphic changes depend on the nitrogen source.
    Sanna ML; Zara S; Zara G; Migheli Q; Budroni M; Mannazzu I
    Fungal Biol; 2012 Jul; 116(7):769-77. PubMed ID: 22749163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible pseudohyphal growth in haploid Saccharomyces cerevisiae is an aerobic process.
    Wright RM; Repine T; Repine JE
    Curr Genet; 1993; 23(5-6):388-91. PubMed ID: 8319293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development.
    Gimeno CJ; Fink GR
    Mol Cell Biol; 1994 Mar; 14(3):2100-12. PubMed ID: 8114741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HYPHAEdelity: a quantitative image analysis tool for assessing peripheral whole colony filamentation.
    Britton SJ; Rogers LJ; White JS; Maskell DL
    FEMS Yeast Res; 2022 Nov; 22(1):. PubMed ID: 36398755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RAM pathway contributes to Rpb4 dependent pseudohyphal differentiation in Saccharomyces cerevisiae.
    Verma-Gaur J; Deshpande S; Sadhale PP
    Fungal Genet Biol; 2008 Oct; 45(10):1373-9. PubMed ID: 18687406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flo11p adhesin required for meiotic differentiation in Saccharomyces cerevisiae minicolonies grown on plastic surfaces.
    White MG; Piccirillo S; Dusevich V; Law DJ; Kapros T; Honigberg SM
    FEMS Yeast Res; 2011 Mar; 11(2):223-32. PubMed ID: 21205160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.