These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30474)

  • 21. Steady-state kinetic studies of the inhibitory action of Zn2+ on ribonuclease T1 catalysis.
    Itaya M; Inoue Y
    Biochem J; 1982 Nov; 207(2):357-62. PubMed ID: 6818948
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissection of the ribonuclease T1 subsite. The transesterification kinetics of Asn36Ala and Asn98Ala ribonuclease T1 for minimal dinucleoside phosphates.
    Steyaert J; Haikal AF; Stanssens P; Wyns L
    Eur J Biochem; 1992 Feb; 203(3):551-5. PubMed ID: 1735439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of ribonuclease T1 with DNA, mononucleotides and oligonucleotides.
    Campbell MK; Lawler AM; Cooper JC; Dalton MC
    Biochem Biophys Res Commun; 1982 Nov; 109(1):49-54. PubMed ID: 6818960
    [No Abstract]   [Full Text] [Related]  

  • 24. A two-binding-site kinetic model for the ribonuclease-T1-catalysed transesterification of dinucleoside phosphate substrates.
    Steyaert J; Engelborghs Y
    Eur J Biochem; 1995 Oct; 233(1):140-4. PubMed ID: 7588737
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The subsite structures of guanine-specific ribonucleases and a guanine-preferential ribonuclease. Cleavage of oligoinosinic acids and poly I.
    Watanabe H; Ando E; Ohgi K; Irie M
    J Biochem; 1985 Nov; 98(5):1239-45. PubMed ID: 3936847
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Subsite interactions of ribonuclease T1: Asn36 and Asn98 accelerate GpN transesterification through interactions with the leaving nucleoside N.
    Steyaert J; Haikal AF; Wyns L; Stanssens P
    Biochemistry; 1991 Sep; 30(35):8666-70. PubMed ID: 1653603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conformation and flexibility of GpC and CpG in neutral aqueous solution using 1H nuclear-magnetic-resonance and spin-lattice-relaxation time measurements.
    Neumann JM; Guschlbauer W; Tran-Dinh S
    Eur J Biochem; 1979 Oct; 100(1):141-8. PubMed ID: 226358
    [No Abstract]   [Full Text] [Related]  

  • 28. The structure and function of ribonuclease T1. XX. Specific inactivation of ribonuclease T1 by reaction with tosylglycolate.
    Oshima H; Takahashi K
    J Biochem; 1976 Dec; 80(6):1259-65. PubMed ID: 14119
    [TBL] [Abstract][Full Text] [Related]  

  • 29. pH-profiles of the kinetic parameters of a minor ribonuclease from Aspergillus saitoi.
    Irie M; Ohgi K
    J Biochem; 1978 Mar; 83(3):789-93. PubMed ID: 25272
    [No Abstract]   [Full Text] [Related]  

  • 30. Relaxation kinetics of ribonuclease T1 binding with guanosine and 3'-GMP.
    Walz FG
    Biochim Biophys Acta; 1992 Oct; 1159(3):327-34. PubMed ID: 1327162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential activity staining: its use in characterization of guanylyl-specific ribonuclease in the genus Ustilago.
    Blank A; Dekker CA
    Proc Natl Acad Sci U S A; 1975 Dec; 72(12):4914-7. PubMed ID: 813217
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studies on the primary and secondary structure of potato spindle tuber viroid: products of digestion with ribonuclease A and ribonuclease T1, and modification with bisulfite.
    Domdey H; Jank P; Sänger L; Gross HJ
    Nucleic Acids Res; 1978 Apr; 5(4):1221-36. PubMed ID: 418383
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Subsite interactions of ribonuclease T1: binding studies of dimeric substrate analogues.
    Walz FG; Terenna B
    Biochemistry; 1976 Jun; 15(13):2837-42. PubMed ID: 820374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Specific interaction of base-specific nucleases with nucleosides and nucleotides.
    Egami F; Oshima T; Uchida T
    Mol Biol Biochem Biophys; 1980; 32():250-77. PubMed ID: 6255305
    [No Abstract]   [Full Text] [Related]  

  • 35. A method for the isolation of cytidylate series from ribonuclease T1-oligonucleotides.
    Contreras R; Fiers W
    Anal Biochem; 1975 Jul; 67(1):319-26. PubMed ID: 807124
    [No Abstract]   [Full Text] [Related]  

  • 36. Systematic synthesis of dinucleotides and trinucleotides with RNases U2, N1, and a non-specific RNase from B. subtilis.
    Uchida T; Funayama-Machida C
    J Biochem; 1977 May; 81(5):1237-46. PubMed ID: 408330
    [No Abstract]   [Full Text] [Related]  

  • 37. Subsite interactions of ribonuclease T1: viscosity effects indicate that the rate-limiting step of GpN transesterification depends on the nature of N.
    Steyaert J; Wyns L; Stanssens P
    Biochemistry; 1991 Sep; 30(35):8661-5. PubMed ID: 1909570
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of various phosphodiesters and phosphomonoesters with ribonuclease N.
    Tamanoi F; Uchida T; Egami F; Oshima T
    J Biochem; 1976 Jul; 80(1):27-32. PubMed ID: 184080
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Photo-oxidation and carboxymethylation of guanylribonuclease Pch1].
    Grishchenko VM; Markelova NIu
    Biokhimiia; 1979 Aug; 44(8):1447-53. PubMed ID: 40625
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of the single tryptophan residue in the structure and function of ribonuclease T1.
    Fukunaga Y; Tamaoki H; Sakiyama F; Narita K
    J Biochem; 1982 Jul; 92(1):143-53. PubMed ID: 6811571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.