BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30474025)

  • 1. Fermentative Production of
    Mindt M; Walter T; Risse JM; Wendisch VF
    Front Bioeng Biotechnol; 2018; 6():159. PubMed ID: 30474025
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolic Engineering of
    Benninghaus L; Walter T; Mindt M; Risse JM; Wendisch VF
    J Agric Food Chem; 2021 Sep; 69(34):9849-9858. PubMed ID: 34465093
    [No Abstract]   [Full Text] [Related]  

  • 3. γ-Glutamylation of Isopropylamine by Fermentation.
    Benninghaus L; Zagami L; Tassini G; Meyer F; Wendisch VF
    Chembiochem; 2024 Jan; 25(2):e202300608. PubMed ID: 37987374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fermentative Production of
    Mindt M; Hannibal S; Heuser M; Risse JM; Sasikumar K; Nampoothiri KM; Wendisch VF
    Front Bioeng Biotechnol; 2019; 7():232. PubMed ID: 31616665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Pseudomonas putida KT2440 for high-yield production of protocatechuic acid.
    Li J; Ye BC
    Bioresour Technol; 2021 Jan; 319():124239. PubMed ID: 33254462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genes of the N-methylglutamate pathway are essential for growth of Methylobacterium extorquens DM4 with monomethylamine.
    Gruffaz C; Muller EE; Louhichi-Jelail Y; Nelli YR; Guichard G; Bringel F
    Appl Environ Microbiol; 2014 Jun; 80(11):3541-50. PubMed ID: 24682302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst.
    Mindt M; Risse JM; Gruß H; Sewald N; Eikmanns BJ; Wendisch VF
    Sci Rep; 2018 Aug; 8(1):12895. PubMed ID: 30150644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustainable Production of
    Kerbs A; Mindt M; Schwardmann L; Wendisch VF
    Microorganisms; 2021 Apr; 9(4):. PubMed ID: 33924554
    [No Abstract]   [Full Text] [Related]  

  • 9. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol.
    Beckers V; Poblete-Castro I; Tomasch J; Wittmann C
    Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida.
    Mi J; Becher D; Lubuta P; Dany S; Tusch K; Schewe H; Buchhaupt M; Schrader J
    Microb Cell Fact; 2014 Dec; 13():170. PubMed ID: 25471523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High cell density cultivation of Pseudomonas putida KT2440 using glucose without the need for oxygen enriched air supply.
    Davis R; Duane G; Kenny ST; Cerrone F; Guzik MW; Babu RP; Casey E; O'Connor KE
    Biotechnol Bioeng; 2015 Apr; 112(4):725-33. PubMed ID: 25311981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic Engineering of Pseudomonas putida KT2440 to Produce Anthranilate from Glucose.
    Kuepper J; Dickler J; Biggel M; Behnken S; Jäger G; Wierckx N; Blank LM
    Front Microbiol; 2015; 6():1310. PubMed ID: 26635771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The glycerol-dependent metabolic persistence of Pseudomonas putida KT2440 reflects the regulatory logic of the GlpR repressor.
    Nikel PI; Romero-Campero FJ; Zeidman JA; Goñi-Moreno Á; de Lorenzo V
    mBio; 2015 Mar; 6(2):. PubMed ID: 25827416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of GlpR repressor in Pseudomonas putida KT2440 growth and PHA production from glycerol.
    Escapa IF; del Cerro C; García JL; Prieto MA
    Environ Microbiol; 2013 Jan; 15(1):93-110. PubMed ID: 22646161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of medium chain length polyhydroxyalkanoate from acetate by engineered Pseudomonas putida KT2440.
    Yang S; Li S; Jia X
    J Ind Microbiol Biotechnol; 2019 Jun; 46(6):793-800. PubMed ID: 30864026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Pseudomonas putida KT2440 to convert 2,3-butanediol to mevalonate.
    Yang J; Im Y; Kim TH; Lee MJ; Cho S; Na JG; Lee J; Oh BK
    Enzyme Microb Technol; 2020 Jan; 132():109437. PubMed ID: 31731966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring differences in gene expression levels and polyhydroxyalkanoate (PHA) production in Pseudomonas putida KT2440 grown on different carbon sources.
    Wang Q; Nomura CT
    J Biosci Bioeng; 2010 Dec; 110(6):653-9. PubMed ID: 20807680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440.
    Sun Z; Ramsay JA; Guay M; Ramsay BA
    Appl Microbiol Biotechnol; 2007 Feb; 74(1):69-77. PubMed ID: 17063330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved production of medium-chain-length polyhydroxyalkanoates in glucose-based fed-batch cultivations of metabolically engineered Pseudomonas putida strains.
    Poblete-Castro I; Rodriguez AL; Lam CM; Kessler W
    J Microbiol Biotechnol; 2014 Jan; 24(1):59-69. PubMed ID: 24150495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.