BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30474025)

  • 21. Novel homologous lactate transporter improves L-lactic acid production from glycerol in recombinant strains of Pichia pastoris.
    de Lima PB; Mulder KC; Melo NT; Carvalho LS; Menino GS; Mulinari E; de Castro VH; Dos Reis TF; Goldman GH; Magalhães BS; Parachin NS
    Microb Cell Fact; 2016 Sep; 15(1):158. PubMed ID: 27634467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental validation of in silico estimated biomass yields of Pseudomonas putida KT2440.
    Hintermayer SB; Weuster-Botz D
    Biotechnol J; 2017 Jun; 12(6):. PubMed ID: 28294579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioproduction of propionic acid using levulinic acid by engineered
    Tiwari R; Sathesh-Prabu C; Lee SK
    Front Bioeng Biotechnol; 2022; 10():939248. PubMed ID: 36032729
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crude glycerol as feedstock for the sustainable production of p-hydroxybenzoate by Pseudomonas putida S12.
    Verhoef S; Gao N; Ruijssenaars HJ; de Winde JH
    N Biotechnol; 2014 Jan; 31(1):114-9. PubMed ID: 23999132
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combinatorial metabolic engineering of Pseudomonas putida KT2440 for efficient mineralization of 1,2,3-trichloropropane.
    Gong T; Xu X; Che Y; Liu R; Gao W; Zhao F; Yu H; Liang J; Xu P; Song C; Yang C
    Sci Rep; 2017 Aug; 7(1):7064. PubMed ID: 28765600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of heterologous protein by Methylobacterium extorquens in high cell density fermentation.
    Bélanger L; Figueira MM; Bourque D; Morel L; Béland M; Laramée L; Groleau D; Míguez CB
    FEMS Microbiol Lett; 2004 Feb; 231(2):197-204. PubMed ID: 14987765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of 3-hydroxypropionic acid in engineered Methylobacterium extorquens AM1 and its reassimilation through a reductive route.
    Yang YM; Chen WJ; Yang J; Zhou YM; Hu B; Zhang M; Zhu LP; Wang GY; Yang S
    Microb Cell Fact; 2017 Oct; 16(1):179. PubMed ID: 29084554
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetics of medium-chain-length polyhydroxyalkanoate production by a novel isolate of Pseudomonas putida LS46.
    Sharma PK; Fu J; Cicek N; Sparling R; Levin DB
    Can J Microbiol; 2012 Aug; 58(8):982-9. PubMed ID: 22804681
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbial production of medium-chain-length 3-hydroxyalkanoic acids by recombinant Pseudomonas putida KT2442 harboring genes fadL, fadD and phaZ.
    Yuan MQ; Shi ZY; Wei XX; Wu Q; Chen SF; Chen GQ
    FEMS Microbiol Lett; 2008 Jun; 283(2):167-75. PubMed ID: 18422622
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12.
    Verhoef S; Ruijssenaars HJ; de Bont JA; Wery J
    J Biotechnol; 2007 Oct; 132(1):49-56. PubMed ID: 17900735
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-titer production of monomeric hydroxyvalerates from levulinic acid in Pseudomonas putida.
    Martin CH; Prather KL
    J Biotechnol; 2009 Jan; 139(1):61-7. PubMed ID: 18938201
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic Engineering of
    Yu S; Plan MR; Winter G; Krömer JO
    Front Bioeng Biotechnol; 2016; 4():90. PubMed ID: 27965953
    [No Abstract]   [Full Text] [Related]  

  • 33. pH-stat fed-batch process to enhance the production of cis, cis-muconate from benzoate by Pseudomonas putida KT2440-JD1.
    van Duuren JB; Wijte D; Karge B; dos Santos VA; Yang Y; Mars AE; Eggink G
    Biotechnol Prog; 2012; 28(1):85-92. PubMed ID: 21954182
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioconversion of methanol to value-added mevalonate by engineered Methylobacterium extorquens AM1 containing an optimized mevalonate pathway.
    Zhu WL; Cui JY; Cui LY; Liang WF; Yang S; Zhang C; Xing XH
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2171-82. PubMed ID: 26521242
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessing Carbon Source-Dependent Phenotypic Variability in Pseudomonas putida.
    Nikel PI; de Lorenzo V
    Methods Mol Biol; 2018; 1745():287-301. PubMed ID: 29476475
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High titer heterologous rhamnolipid production.
    Beuker J; Barth T; Steier A; Wittgens A; Rosenau F; Henkel M; Hausmann R
    AMB Express; 2016 Dec; 6(1):124. PubMed ID: 27957724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering isoprenoids production in metabolically versatile microbial host Pseudomonas putida.
    Wang X; Baidoo EEK; Kakumanu R; Xie S; Mukhopadhyay A; Lee TS
    Biotechnol Biofuels Bioprod; 2022 Dec; 15(1):137. PubMed ID: 36510293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Xylose as preferred substrate for sarcosine production by recombinant Corynebacterium glutamicum.
    Mindt M; Heuser M; Wendisch VF
    Bioresour Technol; 2019 Jun; 281():135-142. PubMed ID: 30818264
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440.
    Wigneswaran V; Nielsen KF; Sternberg C; Jensen PR; Folkesson A; Jelsbak L
    Microb Cell Fact; 2016 Oct; 15(1):181. PubMed ID: 27776509
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Designing and Engineering
    Lim CK; Villada JC; Chalifour A; Duran MF; Lu H; Lee PKH
    Front Microbiol; 2019; 10():1027. PubMed ID: 31143170
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.