These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 30474058)

  • 1. Strain-triggered mechanical feedback in self-organizing optic-cup morphogenesis.
    Okuda S; Takata N; Hasegawa Y; Kawada M; Inoue Y; Adachi T; Sasai Y; Eiraku M
    Sci Adv; 2018 Nov; 4(11):eaau1354. PubMed ID: 30474058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-organizing optic-cup morphogenesis in three-dimensional culture.
    Eiraku M; Takata N; Ishibashi H; Kawada M; Sakakura E; Okuda S; Sekiguchi K; Adachi T; Sasai Y
    Nature; 2011 Apr; 472(7341):51-6. PubMed ID: 21475194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intestinal and optic-cup organoids as tools for unveiling mechanics of self-organizing morphogenesis.
    Nath S; Toda S; Okuda S
    Biophys Physicobiol; 2022; 19():e190048. PubMed ID: 36987402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of laminin alpha 1 results in multiple structural defects and divergent effects on adhesion during vertebrate optic cup morphogenesis.
    Bryan CD; Chien CB; Kwan KM
    Dev Biol; 2016 Aug; 416(2):324-37. PubMed ID: 27339294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ojoplano-mediated basal constriction is essential for optic cup morphogenesis.
    Martinez-Morales JR; Rembold M; Greger K; Simpson JC; Brown KE; Quiring R; Pepperkok R; Martin-Bermudo MD; Himmelbauer H; Wittbrodt J
    Development; 2009 Jul; 136(13):2165-75. PubMed ID: 19502481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relaxation-expansion model for self-driven retinal morphogenesis: a hypothesis from the perspective of biosystems dynamics at the multi-cellular level.
    Eiraku M; Adachi T; Sasai Y
    Bioessays; 2012 Jan; 34(1):17-25. PubMed ID: 22052700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence of dorsal-ventral polarity in ESC-derived retinal tissue.
    Hasegawa Y; Takata N; Okuda S; Kawada M; Eiraku M; Sasai Y
    Development; 2016 Nov; 143(21):3895-3906. PubMed ID: 27633992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of spatial-patterned early-developing cardiac organoids using human pluripotent stem cells.
    Hoang P; Wang J; Conklin BR; Healy KE; Ma Z
    Nat Protoc; 2018 Apr; 13(4):723-737. PubMed ID: 29543795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human airway organoid engineering as a step toward lung regeneration and disease modeling.
    Tan Q; Choi KM; Sicard D; Tschumperlin DJ
    Biomaterials; 2017 Jan; 113():118-132. PubMed ID: 27815996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling cell apoptosis for simulating three-dimensional multicellular morphogenesis based on a reversible network reconnection framework.
    Okuda S; Inoue Y; Eiraku M; Adachi T; Sasai Y
    Biomech Model Mechanobiol; 2016 Aug; 15(4):805-16. PubMed ID: 26361766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From Spheroids to Organoids: The Next Generation of Model Systems of Human Cardiac Regeneration in a Dish.
    Scalise M; Marino F; Salerno L; Cianflone E; Molinaro C; Salerno N; De Angelis A; Viglietto G; Urbanek K; Torella D
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34947977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling human development in 3D culture.
    Ader M; Tanaka EM
    Curr Opin Cell Biol; 2014 Dec; 31():23-8. PubMed ID: 25033469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of a Three-Dimensional Retinal Tissue from Self-Organizing Human ESC Culture.
    Kuwahara A; Nakano T; Eiraku M
    Methods Mol Biol; 2017; 1597():17-29. PubMed ID: 28361307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stretching of the retinal pigment epithelium contributes to zebrafish optic cup morphogenesis.
    Moreno-Mármol T; Ledesma-Terrón M; Tabanera N; Martin-Bermejo MJ; Cardozo MJ; Cavodeassi F; Bovolenta P
    Elife; 2021 Sep; 10():. PubMed ID: 34545806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrated pipeline for the multidimensional analysis of branching morphogenesis.
    Combes AN; Short KM; Lefevre J; Hamilton NA; Little MH; Smyth IM
    Nat Protoc; 2014 Dec; 9(12):2859-79. PubMed ID: 25411953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optic cup morphogenesis across species and related inborn human eye defects.
    Cardozo MJ; Sánchez-Bustamante E; Bovolenta P
    Development; 2023 Jan; 150(2):. PubMed ID: 36714981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Three-Dimensional Organoid Culture Model to Assess the Influence of Chemicals on Morphogenetic Fusion.
    Belair DG; Wolf CJ; Moorefield SD; Wood C; Becker C; Abbott BD
    Toxicol Sci; 2018 Dec; 166(2):394-408. PubMed ID: 30496568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal Organoids from Pluripotent Stem Cells Efficiently Recapitulate Retinogenesis.
    Völkner M; Zschätzsch M; Rostovskaya M; Overall RW; Busskamp V; Anastassiadis K; Karl MO
    Stem Cell Reports; 2016 Apr; 6(4):525-538. PubMed ID: 27050948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining Turing and 3D vertex models reproduces autonomous multicellular morphogenesis with undulation, tubulation, and branching.
    Okuda S; Miura T; Inoue Y; Adachi T; Eiraku M
    Sci Rep; 2018 Feb; 8(1):2386. PubMed ID: 29402913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 4-Dimensional Imaging of Zebrafish Optic Cup Morphogenesis.
    Lusk S; Casey MA; Kwan KM
    J Vis Exp; 2021 May; (171):. PubMed ID: 34125104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.