BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 30474189)

  • 21. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins.
    Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON
    J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. msqrob2PTM: Differential Abundance and Differential Usage Analysis of MS-Based Proteomics Data at the Posttranslational Modification and Peptidoform Level.
    Demeulemeester N; Gébelin M; Caldi Gomes L; Lingor P; Carapito C; Martens L; Clement L
    Mol Cell Proteomics; 2024 Feb; 23(2):100708. PubMed ID: 38154689
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of Post-Translational Modifications from Serum/Plasma by Immunoaffinity Enrichment and LC-MS/MS Analysis Without Depletion of Abundant Proteins.
    Gu H; Ren J; Jia X; Stokes MP
    Methods Mol Biol; 2017; 1619():119-125. PubMed ID: 28674881
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Common errors in mass spectrometry-based analysis of post-translational modifications.
    Kim MS; Zhong J; Pandey A
    Proteomics; 2016 Mar; 16(5):700-14. PubMed ID: 26667783
    [TBL] [Abstract][Full Text] [Related]  

  • 25. STRAP PTM: Software Tool for Rapid Annotation and Differential Comparison of Protein Post-Translational Modifications.
    Spencer JL; Bhatia VN; Whelan SA; Costello CE; McComb ME
    Curr Protoc Bioinformatics; 2013 Dec; 44(1322):13.22.1-36. PubMed ID: 25422678
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional analysis tools for post-translational modification: a post-translational modification database for analysis of proteins and metabolic pathways.
    Cruz ER; Nguyen H; Nguyen T; Wallace IS
    Plant J; 2019 Sep; 99(5):1003-1013. PubMed ID: 31034103
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Status of large-scale analysis of post-translational modifications by mass spectrometry.
    Olsen JV; Mann M
    Mol Cell Proteomics; 2013 Dec; 12(12):3444-52. PubMed ID: 24187339
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enrichment and separation techniques for large-scale proteomics analysis of the protein post-translational modifications.
    Huang J; Wang F; Ye M; Zou H
    J Chromatogr A; 2014 Dec; 1372C():1-17. PubMed ID: 25465002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Integrated Workflow for Global, Glyco-, and Phospho-proteomic Analysis of Tumor Tissues.
    Zhou Y; Lih TM; Yang G; Chen SY; Chen L; Chan DW; Zhang H; Li QK
    Anal Chem; 2020 Jan; 92(2):1842-1849. PubMed ID: 31859488
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protease specificity profiling by tandem mass spectrometry using proteome-derived peptide libraries.
    Schilling O; auf dem Keller U; Overall CM
    Methods Mol Biol; 2011; 753():257-72. PubMed ID: 21604128
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple proteases to localize oxidation sites.
    Gu L; Robinson RA
    PLoS One; 2015; 10(3):e0116606. PubMed ID: 25775238
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteome-Wide Identification of In Vivo ADP-Ribose Acceptor Sites by Liquid Chromatography-Tandem Mass Spectrometry.
    Larsen SC; Leutert M; Bilan V; Martello R; Jungmichel S; Young C; Hottiger MO; Nielsen ML
    Methods Mol Biol; 2017; 1608():149-162. PubMed ID: 28695509
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discovery of Post-Translational Modifications in
    Duong VA; Nam O; Jin E; Park JM; Lee H
    Molecules; 2021 Apr; 26(7):. PubMed ID: 33918234
    [No Abstract]   [Full Text] [Related]  

  • 34. Software eyes for protein post-translational modifications.
    Na S; Paek E
    Mass Spectrom Rev; 2015; 34(2):133-47. PubMed ID: 24889695
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large-scale analysis of post-translational modifications in E. coli under glucose-limiting conditions.
    Brown CW; Sridhara V; Boutz DR; Person MD; Marcotte EM; Barrick JE; Wilke CO
    BMC Genomics; 2017 Apr; 18(1):301. PubMed ID: 28412930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Analysis of contribution of protein phosphorylation in the development of the diseases].
    Zavialova MG; Zgoda VG; Nikolaev EN
    Biomed Khim; 2017 Mar; 63(2):101-114. PubMed ID: 28414281
    [TBL] [Abstract][Full Text] [Related]  

  • 37. dbPTM in 2019: exploring disease association and cross-talk of post-translational modifications.
    Huang KY; Lee TY; Kao HJ; Ma CT; Lee CC; Lin TH; Chang WC; Huang HD
    Nucleic Acids Res; 2019 Jan; 47(D1):D298-D308. PubMed ID: 30418626
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modification-specific proteomics in plant biology.
    Ytterberg AJ; Jensen ON
    J Proteomics; 2010 Oct; 73(11):2249-66. PubMed ID: 20541636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Maximizing Depth of PTM Coverage: Generating Robust MS Datasets for Computational Prediction Modeling.
    Iannetta AA; Hicks LM
    Methods Mol Biol; 2022; 2499():1-41. PubMed ID: 35696073
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of Immobilized Enzyme Reactors for the characterization of the glycosylation heterogeneity of a protein.
    Perchepied S; Eskenazi N; Giangrande C; Camperi J; Fournier T; Vinh J; Delaunay N; Pichon V
    Talanta; 2020 Jan; 206():120171. PubMed ID: 31514875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.