BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30474375)

  • 1. Tethered Bichromophoric Fluorophore Quencher Voltage Sensitive Dyes.
    Yan P; Acker CD; Loew LM
    ACS Sens; 2018 Dec; 3(12):2621-2628. PubMed ID: 30474375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent styryl dyes of the RH series affect a potential drop on the membrane/solution boundary.
    Malkov DY; Sokolov VS
    Biochim Biophys Acta; 1996 Jan; 1278(2):197-204. PubMed ID: 8593277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biolistic delivery of voltage-sensitive dyes for fast recording of membrane potential changes in individual neurons in rat brain slices.
    Aseyev N; Roshchin M; Ierusalimsky VN; Balaban PM; Nikitin ES
    J Neurosci Methods; 2013 Jan; 212(1):17-27. PubMed ID: 22983172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Development of Novel Dark Quenchers and Their Application to Imaging Probes].
    Hanaoka K
    Yakugaku Zasshi; 2019; 139(2):277-283. PubMed ID: 30713240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Submillisecond optical reporting of membrane potential in situ using a neuronal tracer dye.
    Bradley J; Luo R; Otis TS; DiGregorio DA
    J Neurosci; 2009 Jul; 29(29):9197-209. PubMed ID: 19625510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Listening to membrane potential: photoacoustic voltage-sensitive dye recording.
    Zhang HK; Yan P; Kang J; Abou DS; Le HN; Jha AK; Thorek DL; Kang JU; Rahmim A; Wong DF; Boctor EM; Loew LM
    J Biomed Opt; 2017 Apr; 22(4):45006. PubMed ID: 28394000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The conversion of azo-quenchers to fluorophores.
    Hofstetter O; Hofstetter H; Miron T; Wilchek M
    Anal Biochem; 2019 Nov; 585():113400. PubMed ID: 31437428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-sensitive fluorescence of amphiphilic hemicyanine dyes in a black lipid membrane of glycerol monooleate.
    Fromherz P; Schenk O
    Biochim Biophys Acta; 1994 May; 1191(2):299-308. PubMed ID: 8172915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of antioxidants with depth-dependent fluorescence quenchers and energy transfer probes in lipid bilayers.
    Hinzmann JS; McKenna RL; Pierson TS; Han F; Kezdy FJ; Epps DE
    Chem Phys Lipids; 1992 Sep; 62(2):123-38. PubMed ID: 1423807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [An optical mapping system based on spectral shift of voltage-sensitive dyes].
    Wang J; Zhang ZX; Xu ZH; Jin YS; Ji XL; Jin YB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Mar; 28(3):617-20. PubMed ID: 18536426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring the induced membrane voltage with Di-8-ANEPPS.
    Pucihar G; Kotnik T; Miklavcic D
    J Vis Exp; 2009 Nov; (33):. PubMed ID: 19927116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-resolved fluorescence in lipid bilayers: selected applications and advantages over steady state.
    Amaro M; Šachl R; Jurkiewicz P; Coutinho A; Prieto M; Hof M
    Biophys J; 2014 Dec; 107(12):2751-2760. PubMed ID: 25517142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new FRET-based ratiometric fluorescence probe for hypochlorous acid and its imaging in living cells.
    Yan YH; He XY; Su L; Miao JY; Zhao BX
    Talanta; 2019 Aug; 201():330-334. PubMed ID: 31122431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-dependent translocation of R18 and DiI across lipid bilayers leads to fluorescence changes.
    Melikyan GB; Deriy BN; Ok DC; Cohen FS
    Biophys J; 1996 Nov; 71(5):2680-91. PubMed ID: 8913605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of BODIPY fluorescence by the photoinduced dealkylation of a pyridinium quencher.
    Ragab SS; Swaminathan S; Baker JD; Raymo FM
    Phys Chem Chem Phys; 2013 Sep; 15(36):14851-5. PubMed ID: 23694991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes.
    Marras SA; Kramer FR; Tyagi S
    Nucleic Acids Res; 2002 Nov; 30(21):e122. PubMed ID: 12409481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiology, Unplugged: Imaging Membrane Potential with Fluorescent Indicators.
    Liu P; Miller EW
    Acc Chem Res; 2020 Jan; 53(1):11-19. PubMed ID: 31834772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FRET-based imaging of transbilayer movement of pepducin in living cells by novel intracellular bioreductively activatable fluorescent probes.
    Tsuji M; Ueda S; Hirayama T; Okuda K; Sakaguchi Y; Isono A; Nagasawa H
    Org Biomol Chem; 2013 May; 11(18):3030-7. PubMed ID: 23532512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of intramolecular heterodimer-induced fluorescence quenching of tricarbocyanine dye for the development of fluorescent sensor.
    Hirano T; Akiyama J; Mori S; Kagechika H
    Org Biomol Chem; 2010 Dec; 8(24):5568-75. PubMed ID: 20931144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectra of voltage-sensitive fluorescence of styryl-dye in neuron membrane.
    Fromherz P; Lambacher A
    Biochim Biophys Acta; 1991 Sep; 1068(2):149-56. PubMed ID: 1911828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.