These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30474484)

  • 1. Now trending: Coping with non-parallel trends in difference-in-differences analysis.
    Ryan AM; Kontopantelis E; Linden A; Burgess JF
    Stat Methods Med Res; 2019 Dec; 28(12):3697-3711. PubMed ID: 30474484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What is the best way to estimate hospital quality outcomes? A simulation approach.
    Ryan A; Burgess J; Strawderman R; Dimick J
    Health Serv Res; 2012 Aug; 47(4):1699-718. PubMed ID: 22352894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving causal inference with a doubly robust estimator that combines propensity score stratification and weighting.
    Linden A
    J Eval Clin Pract; 2017 Aug; 23(4):697-702. PubMed ID: 28116816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the ability of double-robust estimators to correct bias in propensity score matching analysis. A Monte Carlo simulation study.
    Nguyen TL; Collins GS; Spence J; Devereaux PJ; Daurès JP; Landais P; Le Manach Y
    Pharmacoepidemiol Drug Saf; 2017 Dec; 26(12):1513-1519. PubMed ID: 28984050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why We Should Not Be Indifferent to Specification Choices for Difference-in-Differences.
    Ryan AM; Burgess JF; Dimick JB
    Health Serv Res; 2015 Aug; 50(4):1211-35. PubMed ID: 25495529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model misspecification and robustness in causal inference: comparing matching with doubly robust estimation.
    Waernbaum I
    Stat Med; 2012 Jul; 31(15):1572-81. PubMed ID: 22359267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Monte Carlo experiments to select meta-analytic estimators.
    Hong S; Reed WR
    Res Synth Methods; 2021 Mar; 12(2):192-215. PubMed ID: 33150663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of four quasi-experimental methods: an analysis of the introduction of activity-based funding in Ireland.
    Valentelyte G; Keegan C; Sorensen J
    BMC Health Serv Res; 2022 Nov; 22(1):1311. PubMed ID: 36329423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of heterogeneity variance estimators in combining results of studies.
    Sidik K; Jonkman JN
    Stat Med; 2007 Apr; 26(9):1964-81. PubMed ID: 16955539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volume and health outcomes: evidence from systematic reviews and from evaluation of Italian hospital data.
    Amato L; Fusco D; Acampora A; Bontempi K; Rosa AC; Colais P; Cruciani F; D'Ovidio M; Mataloni F; Minozzi S; Mitrova Z; Pinnarelli L; Saulle R; Soldati S; Sorge C; Vecchi S; Ventura M; Davoli M
    Epidemiol Prev; 2017; 41(5-6 (Suppl 2)):1-128. PubMed ID: 29205995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal caliper width for propensity score matching of three treatment groups: a Monte Carlo study.
    Wang Y; Cai H; Li C; Jiang Z; Wang L; Song J; Xia J
    PLoS One; 2013; 8(12):e81045. PubMed ID: 24349029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Matching and Regression to the Mean in Difference-in-Differences Analysis.
    Daw JR; Hatfield LA
    Health Serv Res; 2018 Dec; 53(6):4138-4156. PubMed ID: 29957834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating causal effects for multivalued treatments: a comparison of approaches.
    Linden A; Uysal SD; Ryan A; Adams JL
    Stat Med; 2016 Feb; 35(4):534-52. PubMed ID: 26482211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variance estimation when using propensity-score matching with replacement with survival or time-to-event outcomes.
    Austin PC; Cafri G
    Stat Med; 2020 May; 39(11):1623-1640. PubMed ID: 32109319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eight interval estimators of a common rate ratio under stratified Poisson sampling.
    Lui KJ
    Stat Med; 2004 Apr; 23(8):1283-96. PubMed ID: 15083483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Models for the propensity score that contemplate the positivity assumption and their application to missing data and causality.
    Molina J; Sued M; Valdora M
    Stat Med; 2018 Oct; 37(24):3503-3518. PubMed ID: 29873100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stratified doubly robust estimators for the average causal effect.
    Hattori S; Henmi M
    Biometrics; 2014 Jun; 70(2):270-7. PubMed ID: 24571129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of principal scores to estimate the marginal compliers causal effect of an intervention.
    Porcher R; Leyrat C; Baron G; Giraudeau B; Boutron I
    Stat Med; 2016 Feb; 35(5):752-67. PubMed ID: 26381261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating causal effects: considering three alternatives to difference-in-differences estimation.
    O'Neill S; Kreif N; Grieve R; Sutton M; Sekhon JS
    Health Serv Outcomes Res Methodol; 2016; 16():1-21. PubMed ID: 27340369
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.