These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 30474728)
1. Methanotrophic contribution to biodegradation of phenoxy acids in cultures enriched from a groundwater-fed rapid sand filter. Papadopoulou A; Hedegaard MJ; Dechesne A; Albrechtsen HJ; Musovic S; Smets BF Appl Microbiol Biotechnol; 2019 Jan; 103(2):1007-1019. PubMed ID: 30474728 [TBL] [Abstract][Full Text] [Related]
2. Evidence of co-metabolic bentazone transformation by methanotrophic enrichment from a groundwater-fed rapid sand filter. Hedegaard MJ; Deliniere H; Prasse C; Dechesne A; Smets BF; Albrechtsen HJ Water Res; 2018 Feb; 129():105-114. PubMed ID: 29136518 [TBL] [Abstract][Full Text] [Related]
3. Mecoprop (MCPP) removal in full-scale rapid sand filters at a groundwater-based waterworks. Hedegaard MJ; Arvin E; Corfitzen CB; Albrechtsen HJ Sci Total Environ; 2014 Nov; 499():257-64. PubMed ID: 25194903 [TBL] [Abstract][Full Text] [Related]
4. Degradation of trace concentrations of the persistent groundwater pollutant 2,6-dichlorobenzamide (BAM) in bioaugmented rapid sand filters. Albers CN; Feld L; Ellegaard-Jensen L; Aamand J Water Res; 2015 Oct; 83():61-70. PubMed ID: 26125500 [TBL] [Abstract][Full Text] [Related]
5. Unravelling the contribution of nitrifying and methanotrophic bacteria to micropollutant co-metabolism in rapid sand filters. Wang J; Zhang C; Poursat BAJ; de Ridder D; Smidt H; van der Wal A; Sutton NB J Hazard Mater; 2022 Feb; 424(Pt D):127760. PubMed ID: 34836694 [TBL] [Abstract][Full Text] [Related]
6. Establishment of Bacterial Herbicide Degraders in a Rapid Sand Filter for Bioremediation of Phenoxypropionate-Polluted Groundwater. Feld L; Nielsen TK; Hansen LH; Aamand J; Albers CN Appl Environ Microbiol; 2016 Feb; 82(3):878-87. PubMed ID: 26590282 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous removal of nitrate and pesticides from groundwater using a methane-fed membrane biofilm reactor. Modin O; Fukushi K; Yamamoto K Water Sci Technol; 2008; 58(6):1273-9. PubMed ID: 18845866 [TBL] [Abstract][Full Text] [Related]
8. Microbial pesticide removal in rapid sand filters for drinking water treatment--potential and kinetics. Hedegaard MJ; Albrechtsen HJ Water Res; 2014 Jan; 48():71-81. PubMed ID: 24112625 [TBL] [Abstract][Full Text] [Related]
9. Arsenic removal from drinking water by a household sand filter in Vietnam--effect of filter usage practices on arsenic removal efficiency and microbiological water quality. Nitzsche KS; Lan VM; Trang PT; Viet PH; Berg M; Voegelin A; Planer-Friedrich B; Zahoransky J; Müller SK; Byrne JM; Schröder C; Behrens S; Kappler A Sci Total Environ; 2015 Jan; 502():526-36. PubMed ID: 25300017 [TBL] [Abstract][Full Text] [Related]
10. Groundwater contamination with 2,6-dichlorobenzamide (BAM) and perspectives for its microbial removal. Ellegaard-Jensen L; Horemans B; Raes B; Aamand J; Hansen LH Appl Microbiol Biotechnol; 2017 Jul; 101(13):5235-5245. PubMed ID: 28616645 [TBL] [Abstract][Full Text] [Related]
11. Adhesion to sand and ability to mineralise low pesticide concentrations are required for efficient bioaugmentation of flow-through sand filters. Samuelsen ED; Badawi N; Nybroe O; Sørensen SR; Aamand J Appl Microbiol Biotechnol; 2017 Jan; 101(1):411-421. PubMed ID: 27734123 [TBL] [Abstract][Full Text] [Related]
12. Groundwater chemistry determines the prokaryotic community structure of waterworks sand filters. Albers CN; Ellegaard-Jensen L; Harder CB; Rosendahl S; Knudsen BE; Ekelund F; Aamand J Environ Sci Technol; 2015 Jan; 49(2):839-46. PubMed ID: 25522137 [TBL] [Abstract][Full Text] [Related]
13. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
14. Fate of low arsenic concentrations during full-scale aeration and rapid filtration. Gude JCJ; Rietveld LC; van Halem D Water Res; 2016 Jan; 88():566-574. PubMed ID: 26547752 [TBL] [Abstract][Full Text] [Related]
16. Effect of aeration, iron and arsenic concentrations, and groundwater matrix on arsenic removal using laboratory sand filtration. Coles CA; Rohail D Environ Geochem Health; 2020 Nov; 42(11):4051-4064. PubMed ID: 32696199 [TBL] [Abstract][Full Text] [Related]
17. Metagenomic profiling of ammonia- and methane-oxidizing microorganisms in two sequential rapid sand filters. Poghosyan L; Koch H; Frank J; van Kessel MAHJ; Cremers G; van Alen T; Jetten MSM; Op den Camp HJM; Lücker S Water Res; 2020 Oct; 185():116288. PubMed ID: 32810745 [TBL] [Abstract][Full Text] [Related]
19. The role of microbial adaptation and biodegradable dissolved organic carbon on the attenuation of trace organic chemicals during groundwater recharge. Hoppe-Jones C; Dickenson ER; Drewes JE Sci Total Environ; 2012 Oct; 437():137-44. PubMed ID: 22940041 [TBL] [Abstract][Full Text] [Related]
20. Mobility and redox transformation of arsenic during treatment of artificially recharged groundwater for drinking water production. Ahmad A; Heijnen L; de Waal L; Battaglia-Brunet F; Oorthuizen W; Pieterse B; Bhattacharya P; van der Wal A Water Res; 2020 Jul; 178():115826. PubMed ID: 32361349 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]