These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 30474761)
1. A slanted-nanoaperture metal lens: subdiffraction-limited focusing of light in the intermediate field region. Jung YS; Kim M; Shi Y; Xi Y; Kim HK Nano Converg; 2018 Nov; 5(1):33. PubMed ID: 30474761 [TBL] [Abstract][Full Text] [Related]
2. Investigation on Super-Resolution Focusing Performance of a TE-Polarized Nanoslit-Based Two-Dimensional Lens. Zhu Y; Zhou S; Wang Z; Yu Y; Yuan W; Liu W Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31861287 [TBL] [Abstract][Full Text] [Related]
3. Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation. Chen G; Li Y; Yu A; Wen Z; Dai L; Chen L; Zhang Z; Jiang S; Zhang K; Wang X; Lin F Sci Rep; 2016 Jun; 6():29068. PubMed ID: 27353239 [TBL] [Abstract][Full Text] [Related]
4. Focusing radially polarized light by a concentrically corrugated silver film without a hole. Wróbel P; Pniewski J; Antosiewicz TJ; Szoplik T Phys Rev Lett; 2009 May; 102(18):183902. PubMed ID: 19518872 [TBL] [Abstract][Full Text] [Related]
5. Creation of Sub-diffraction Longitudinally Polarized Spot by Focusing Radially Polarized Light with Binary Phase Lens. Yu AP; Chen G; Zhang ZH; Wen ZQ; Dai LR; Zhang K; Jiang SL; Wu ZX; Li YY; Wang CT; Luo XG Sci Rep; 2016 Dec; 6():38859. PubMed ID: 27941852 [TBL] [Abstract][Full Text] [Related]
6. Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light. Chen G; Zhang K; Yu A; Wang X; Zhang Z; Li Y; Wen Z; Li C; Dai L; Jiang S; Lin F Opt Express; 2016 May; 24(10):11002-8. PubMed ID: 27409922 [TBL] [Abstract][Full Text] [Related]
7. Subdiffraction focusing lens based on quadrangular-frustum pyramid-shaped metasurface. Li H; Zhang Q; Jiang X; Liang G; Wen Z; Zhang Z; Shang Z; Chen G Appl Opt; 2019 Oct; 58(28):7688-7692. PubMed ID: 31674449 [TBL] [Abstract][Full Text] [Related]
8. Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens. Chen H; Wu Z; Li Z; Luo Z; Jiang X; Wen Z; Zhu L; Zhou X; Li H; Shang Z; Zhang Z; Zhang K; Liang G; Jiang S; Du L; Chen G Opt Express; 2018 Nov; 26(23):29817-29825. PubMed ID: 30469940 [TBL] [Abstract][Full Text] [Related]
9. Subdiffraction focusing with a long focal length using a terahertz-wave super-oscillatory lens. Iba A; Domier CW; Ikeda M; Mase A; Nakajima M; Pham AV; Luhmann NC Opt Lett; 2021 Oct; 46(19):4912-4915. PubMed ID: 34598232 [TBL] [Abstract][Full Text] [Related]
10. Efficient modulation of subwavelength focusing via meta-aperture-based plasmonic lens for multifunction applications. Chang KH; Chen YC; Chang WH; Lee PT Sci Rep; 2018 Sep; 8(1):13648. PubMed ID: 30206269 [TBL] [Abstract][Full Text] [Related]
11. Generation of subdiffraction longitudinal bifoci by shaping a radially polarized wave. Wu Z; Deng H; Li X; Liu Q; Shang L Appl Opt; 2020 Sep; 59(26):7841-7845. PubMed ID: 32976455 [TBL] [Abstract][Full Text] [Related]
12. Realizing a terahertz far-field sub-diffraction optical needle with sub-wavelength concentric ring structure array. Ruan D; Li Z; Du L; Zhou X; Zhu L; Lin C; Yang M; Chen G; Yuan W; Liang G; Wen Z Appl Opt; 2018 Sep; 57(27):7905-7909. PubMed ID: 30462058 [TBL] [Abstract][Full Text] [Related]
13. Metallic planar lens constructed by double-turn waveguides for sub-diffraction-limit focusing. Qi K; Zhu Y; Sun H; Yu Y Opt Express; 2017 Sep; 25(18):21191-21200. PubMed ID: 29041525 [TBL] [Abstract][Full Text] [Related]
14. "Plasmonics" in free space: observation of giant wavevectors, vortices, and energy backflow in superoscillatory optical fields. Yuan G; Rogers ETF; Zheludev NI Light Sci Appl; 2019; 8():2. PubMed ID: 30622705 [TBL] [Abstract][Full Text] [Related]
15. A Study of Terahertz-Wave Cylindrical Super-Oscillatory Lens for Industrial Applications. Iba A; Ikeda M; Agulto VC; Mag-Usara VK; Nakajima M Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695944 [TBL] [Abstract][Full Text] [Related]
16. Large-aperture prism-array lens for high-energy X-ray focusing. Zhang W; Liu J; Chang G; Shi Z; Li M; Ren Y; Zhang X; Yi F; Liu P; Sheng W J Synchrotron Radiat; 2016 Sep; 23(Pt 5):1091-6. PubMed ID: 27577761 [TBL] [Abstract][Full Text] [Related]
17. Thin high numerical aperture metalens. Kotlyar VV; Nalimov AG; Stafeev SS; Hu C; O'Faolain L; Kotlyar MV; Gibson D; Song S Opt Express; 2017 Apr; 25(7):8158-8167. PubMed ID: 28380931 [TBL] [Abstract][Full Text] [Related]
18. Ultrahigh light transmission through a C-shaped nanoaperture. Shi X; Hesselink L; Thornton RL Opt Lett; 2003 Aug; 28(15):1320-2. PubMed ID: 12906076 [TBL] [Abstract][Full Text] [Related]
19. Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave. Chen G; Wu ZX; Yu AP; Zhang ZH; Wen ZQ; Zhang K; Dai LR; Jiang SL; Li YY; Chen L; Wang CT; Luo XG Sci Rep; 2016 Nov; 6():37776. PubMed ID: 27876885 [TBL] [Abstract][Full Text] [Related]