BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 30474844)

  • 1. A Multiparametric Assay to Evaluate Senescent Cells.
    Gal H; Porat Z; Krizhanovsky V
    Methods Mol Biol; 2019; 1896():107-117. PubMed ID: 30474844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative identification of senescent cells in aging and disease.
    Biran A; Zada L; Abou Karam P; Vadai E; Roitman L; Ovadya Y; Porat Z; Krizhanovsky V
    Aging Cell; 2017 Aug; 16(4):661-671. PubMed ID: 28455874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods to detect biomarkers of cellular senescence: the senescence-associated beta-galactosidase assay.
    Itahana K; Campisi J; Dimri GP
    Methods Mol Biol; 2007; 371():21-31. PubMed ID: 17634571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Techniques to Induce and Quantify Cellular Senescence.
    Noren Hooten N; Evans MK
    J Vis Exp; 2017 May; (123):. PubMed ID: 28518126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of cellular senescence in culture in vivo: the senescence-associated beta-galactosidase assay.
    Bandyopadhyay D; Gatza C; Donehower LA; Medrano EE
    Curr Protoc Cell Biol; 2005 Jul; Chapter 18():18.9.1-18.9.9. PubMed ID: 18228464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genotoxic Stress-Induced Senescence.
    Fan DNY; Schmitt CA
    Methods Mol Biol; 2019; 1896():93-105. PubMed ID: 30474843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Analysis of Cellular Senescence in Culture and In Vivo.
    Zhao J; Fuhrmann-Stroissnigg H; Gurkar AU; Flores RR; Dorronsoro A; Stolz DB; St Croix CM; Niedernhofer LJ; Robbins PD
    Curr Protoc Cytom; 2017 Jan; 79():9.51.1-9.51.25. PubMed ID: 28055114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiparameter flow cytometric detection and quantification of senescent cells in vitro.
    Adewoye AB; Tampakis D; Follenzi A; Stolzing A
    Biogerontology; 2020 Dec; 21(6):773-786. PubMed ID: 32776262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SA-β-Galactosidase-Based Screening Assay for the Identification of Senotherapeutic Drugs.
    Fuhrmann-Stroissnigg H; Santiago FE; Grassi D; Ling Y; Niedernhofer LJ; Robbins PD
    J Vis Exp; 2019 Jun; (148):. PubMed ID: 31305507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Injury-induced Senescence and In Vivo Reprogramming in the Skeletal Muscle.
    Cazin C; Chiche A; Li H
    J Vis Exp; 2017 Oct; (128):. PubMed ID: 29155716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular senescence imaging and senolysis monitoring in cancer therapy based on a β-galactosidase-activated aggregation-induced emission luminogen.
    Cen P; Cui C; Huang J; Chen H; Wu F; Niu J; Zhong Y; Jin C; Zhu WH; Zhang H; Tian M
    Acta Biomater; 2024 Apr; 179():340-353. PubMed ID: 38556136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Senescence in cells of the aging and degenerating intervertebral disc: immunolocalization of senescence-associated beta-galactosidase in human and sand rat discs.
    Gruber HE; Ingram JA; Norton HJ; Hanley EN
    Spine (Phila Pa 1976); 2007 Feb; 32(3):321-7. PubMed ID: 17268263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of lamin B1 is a biomarker to quantify cellular senescence in photoaged skin.
    Wang AS; Ong PF; Chojnowski A; Clavel C; Dreesen O
    Sci Rep; 2017 Nov; 7(1):15678. PubMed ID: 29142250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of senescence-associated beta-galactosidase in enlarged prostates from men with benign prostatic hyperplasia.
    Choi J; Shendrik I; Peacocke M; Peehl D; Buttyan R; Ikeguchi EF; Katz AE; Benson MC
    Urology; 2000 Jul; 56(1):160-6. PubMed ID: 10869659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Far-red Fluorescent Senescence-associated β-Galactosidase Probe for Identification and Enrichment of Senescent Tumor Cells by Flow Cytometry.
    Flor A; Pagacz J; Thompson D; Kron S
    J Vis Exp; 2022 Sep; (187):. PubMed ID: 36190263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular Identification and Quantification of Senescence-Associated β-Galactosidase Activity In Vivo.
    Childs BG; Bussian TJ; Baker DJ
    Methods Mol Biol; 2019; 1896():31-38. PubMed ID: 30474837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting Markers of Therapy-Induced Senescence in Cancer Cells.
    Fan DN; Schmitt CA
    Methods Mol Biol; 2017; 1534():41-52. PubMed ID: 27812866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Senescence-associated β-galactosidase activity in the developing avian retina.
    de Mera-Rodríguez JA; Álvarez-Hernán G; Gañán Y; Martín-Partido G; Rodríguez-León J; Francisco-Morcillo J
    Dev Dyn; 2019 Sep; 248(9):850-865. PubMed ID: 31226225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absence of distinguishing senescence traits in human melanocytic nevi.
    Tran SL; Haferkamp S; Scurr LL; Gowrishankar K; Becker TM; Desilva C; Thompson JF; Scolyer RA; Kefford RF; Rizos H
    J Invest Dermatol; 2012 Sep; 132(9):2226-34. PubMed ID: 22513787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persistent DNA damage-induced premature senescence alters the functional features of human bone marrow mesenchymal stem cells.
    Minieri V; Saviozzi S; Gambarotta G; Lo Iacono M; Accomasso L; Cibrario Rocchietti E; Gallina C; Turinetto V; Giachino C
    J Cell Mol Med; 2015 Apr; 19(4):734-43. PubMed ID: 25619736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.