These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30474966)

  • 1. Amorphous-MgGaO Film Combined with Graphene for Vacuum-Ultraviolet Photovoltaic Detector.
    Xu C; Du Z; Huang Y; Dong M; Lin R; Li Y; Wang B; Zheng W; Huang F
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42681-42687. PubMed ID: 30474966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vacuum-Ultraviolet Photovoltaic Detector.
    Zheng W; Lin R; Ran J; Zhang Z; Ji X; Huang F
    ACS Nano; 2018 Jan; 12(1):425-431. PubMed ID: 29298035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast Photovoltaic-Type Deep Ultraviolet Photodetectors Using Hybrid Zero-/Two-Dimensional Heterojunctions.
    Kan H; Zheng W; Lin R; Li M; Fu C; Sun H; Dong M; Xu C; Luo J; Fu Y; Huang F
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8412-8418. PubMed ID: 30715832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Pressure O
    Li T; Zheng W; Zhu S; Wang F; Zhu Y; Jia L; Lin Z; Huang F
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16660-16668. PubMed ID: 33787197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction to "Amorphous-MgGaO Film Combined with Graphene for Vacuum-Ultraviolet Photovoltaic Detector".
    Xu C; Du Z; Huang Y; Dong M; Lin R; Li Y; Wang B; Zheng W; Huang F
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9641. PubMed ID: 30789693
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of Substrate and Thickness on the Photoconductivity of Nanoparticle Titanium Dioxide Thin Film Vacuum Ultraviolet Photoconductive Detector.
    Cadatal-Raduban M; Kato T; Horiuchi Y; Olejníček J; Kohout M; Yamanoi K; Ono S
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35009959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic photoresponse behavior of a LaAlO
    Sun X; Wang D; Memon MH; Zhu S; Yu H; Wang H; Fang S; Kang Y; Liu X; Luo Y; Zhang H; Luo D; Sun H
    Nanoscale; 2022 Nov; 14(45):16829-16836. PubMed ID: 36349807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boron Nitride Nanoribbons Grown by Chemical Vapor Deposition for VUV Applications.
    Hao J; Li L; Gao P; Jiang X; Ban C; Shi N
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36143995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pt/(InGa)
    Wang Z; Zheng W; Hu Q; Lin S; Wu Y; Ye D
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44568-44576. PubMed ID: 34514792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-Robust Deep-UV Photovoltaic Detector Based on Graphene/(AlGa)
    Zhang D; Lin W; Liu S; Zhu Y; Lin R; Zheng W; Huang F
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48071-48078. PubMed ID: 31804060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-high Photovoltage (2.45 V) Forming in Graphene Heterojunction via Quasi-Fermi Level Splitting Enhanced Effect.
    Jia L; Zheng W; Lin R; Huang F
    iScience; 2020 Feb; 23(2):100818. PubMed ID: 32004991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A graphene/single GaAs nanowire Schottky junction photovoltaic device.
    Luo Y; Yan X; Zhang J; Li B; Wu Y; Lu Q; Jin C; Zhang X; Ren X
    Nanoscale; 2018 May; 10(19):9212-9217. PubMed ID: 29726561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrawide Band Gap Oxide Nanodots (
    Kan H; Zheng W; Fu C; Lin R; Luo J; Huang F
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6030-6036. PubMed ID: 31916739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epitaxial growth of a single-crystal hybridized boron nitride and graphene layer on a wide-band gap semiconductor.
    Shin HC; Jang Y; Kim TH; Lee JH; Oh DH; Ahn SJ; Lee JH; Moon Y; Park JH; Yoo SJ; Park CY; Whang D; Yang CW; Ahn JR
    J Am Chem Soc; 2015 Jun; 137(21):6897-905. PubMed ID: 25973636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Sensitive Switchable Heterojunction Photodiode Based on Epitaxial Bi
    Huang W; Chakrabartty J; Harnagea C; Gedamu D; Ka I; Chaker M; Rosei F; Nechache R
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12790-12797. PubMed ID: 29565117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vacuum-Ultraviolet Photodetection in Few-Layered h-BN.
    Zheng W; Lin R; Zhang Z; Huang F
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27116-27123. PubMed ID: 30043606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector.
    Zeng LH; Wang MZ; Hu H; Nie B; Yu YQ; Wu CY; Wang L; Hu JG; Xie C; Liang FX; Luo LB
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9362-6. PubMed ID: 24040753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vacuum-Ultraviolet Photon Detections.
    Zheng W; Jia L; Huang F
    iScience; 2020 Jun; 23(6):101145. PubMed ID: 32446223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Performance Graphene/β-Ga
    Lin R; Zheng W; Zhang D; Zhang Z; Liao Q; Yang L; Huang F
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22419-22426. PubMed ID: 29897734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vacuum Ultraviolet Photodetection in Two-Dimensional Oxides.
    Zheng W; Lin R; Zhu Y; Zhang Z; Ji X; Huang F
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20696-20702. PubMed ID: 29808671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.