These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 30475367)

  • 1. Increasing the functionalities of 3D printed microchemical devices by single material, multimaterial, and print-pause-print 3D printing.
    Li F; Macdonald NP; Guijt RM; Breadmore MC
    Lab Chip; 2018 Dec; 19(1):35-49. PubMed ID: 30475367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printing for the integration of porous materials into miniaturised fluidic devices: A review.
    Balakrishnan HK; Doeven EH; Merenda A; Dumée LF; Guijt RM
    Anal Chim Acta; 2021 Nov; 1185():338796. PubMed ID: 34711329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Print-Pause-Print Fabrication of Tailored Electrochemical Microfluidic Devices.
    Hernández-Rodríguez JF; Rojas D; Escarpa A
    Anal Chem; 2023 Dec; 95(51):18679-18684. PubMed ID: 38095628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Hard-Soft Microfluidic Devices Using Hybrid 3D Printing.
    Ruiz C; Kadimisetty K; Yin K; Mauk MG; Zhao H; Liu C
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32492980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 'print-pause-print' protocol for 3D printing microfluidics using multimaterial stereolithography.
    Kim YT; Ahmadianyazdi A; Folch A
    Nat Protoc; 2023 Apr; 18(4):1243-1259. PubMed ID: 36609643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionality integration in stereolithography 3D printed microfluidics using a "print-pause-print" strategy.
    Sagot M; Derkenne T; Giunchi P; Davit Y; Nougayrède JP; Tregouet C; Raimbault V; Malaquin L; Venzac B
    Lab Chip; 2024 Jul; 24(14):3508-3520. PubMed ID: 38934387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimaterial 3D Printed Fluidic Device for Measuring Pharmaceuticals in Biological Fluids.
    Li F; Macdonald NP; Guijt RM; Breadmore MC
    Anal Chem; 2019 Feb; 91(3):1758-1763. PubMed ID: 30513198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Centrifugal multimaterial 3D printing of multifunctional heterogeneous objects.
    Cheng J; Wang R; Sun Z; Liu Q; He X; Li H; Ye H; Yang X; Wei X; Li Z; Jian B; Deng W; Ge Q
    Nat Commun; 2022 Dec; 13(1):7931. PubMed ID: 36566233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printed Multimaterial Microfluidic Valve.
    Keating SJ; Gariboldi MI; Patrick WG; Sharma S; Kong DS; Oxman N
    PLoS One; 2016; 11(8):e0160624. PubMed ID: 27525809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printing in analytical sample preparation.
    Li F; Ceballos MR; Balavandy SK; Fan J; Khataei MM; Yamini Y; Maya F
    J Sep Sci; 2020 May; 43(9-10):1854-1866. PubMed ID: 32056373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-Step Fabrication of a Microfluidic Device with an Integrated Membrane and Embedded Reagents by Multimaterial 3D Printing.
    Li F; Smejkal P; Macdonald NP; Guijt RM; Breadmore MC
    Anal Chem; 2017 Apr; 89(8):4701-4707. PubMed ID: 28322552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimaterial 3D Printing of Graphene-Based Electrodes for Electrochemical Energy Storage Using Thermoresponsive Inks.
    Rocha VG; García-Tuñón E; Botas C; Markoulidis F; Feilden E; D'Elia E; Ni N; Shaffer M; Saiz E
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37136-37145. PubMed ID: 28920439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Printing: An Alternative Microfabrication Approach with Unprecedented Opportunities in Design.
    Balakrishnan HK; Badar F; Doeven EH; Novak JI; Merenda A; Dumée LF; Loy J; Guijt RM
    Anal Chem; 2021 Jan; 93(1):350-366. PubMed ID: 33263392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embedding objects during 3D printing to add new functionalities.
    Yuen PK
    Biomicrofluidics; 2016 Jul; 10(4):044104. PubMed ID: 27478528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimaterial 3D Printing for Microrobotic Mechanisms.
    Soreni-Harari M; St Pierre R; McCue C; Moreno K; Bergbreiter S
    Soft Robot; 2020 Feb; 7(1):59-67. PubMed ID: 31460833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The crossing and integration between microfluidic technology and 3D printing for organ-on-chips.
    Mi S; Du Z; Xu Y; Sun W
    J Mater Chem B; 2018 Oct; 6(39):6191-6206. PubMed ID: 32254609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Addressing Unmet Clinical Needs with 3D Printing Technologies.
    Ghosh U; Ning S; Wang Y; Kong YL
    Adv Healthc Mater; 2018 Sep; 7(17):e1800417. PubMed ID: 30004185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional 3D printing of heterogeneous hydrogel structures.
    Nadernezhad A; Khani N; Skvortsov GA; Toprakhisar B; Bakirci E; Menceloglu Y; Unal S; Koc B
    Sci Rep; 2016 Sep; 6():33178. PubMed ID: 27630079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable resins with PDMS-like elastic modulus for stereolithographic 3D-printing of multimaterial microfluidic actuators.
    Ahmadianyazdi A; Miller IJ; Folch A
    Lab Chip; 2023 Sep; 23(18):4019-4032. PubMed ID: 37584639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Printing for Electrochemical Energy Applications.
    Browne MP; Redondo E; Pumera M
    Chem Rev; 2020 Mar; 120(5):2783-2810. PubMed ID: 32049499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.