These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A permutation approach for selecting the penalty parameter in penalized model selection. Sabourin JA; Valdar W; Nobel AB Biometrics; 2015 Dec; 71(4):1185-94. PubMed ID: 26243050 [TBL] [Abstract][Full Text] [Related]
3. Variable selection for semiparametric mixed models in longitudinal studies. Ni X; Zhang D; Zhang HH Biometrics; 2010 Mar; 66(1):79-88. PubMed ID: 19397585 [TBL] [Abstract][Full Text] [Related]
4. Information criteria for Firth's penalized partial likelihood approach in Cox regression models. Nagashima K; Sato Y Stat Med; 2017 Sep; 36(21):3422-3436. PubMed ID: 28608396 [TBL] [Abstract][Full Text] [Related]
5. Sensitivity and specificity of information criteria. Dziak JJ; Coffman DL; Lanza ST; Li R; Jermiin LS Brief Bioinform; 2020 Mar; 21(2):553-565. PubMed ID: 30895308 [TBL] [Abstract][Full Text] [Related]
6. Resampling-based empirical Bayes multiple testing procedures for controlling generalized tail probability and expected value error rates: focus on the false discovery rate and simulation study. Dudoit S; Gilbert HN; van der Laan MJ Biom J; 2008 Oct; 50(5):716-44. PubMed ID: 18932138 [TBL] [Abstract][Full Text] [Related]
7. Bayesian information criterion for longitudinal and clustered data. Jones RH Stat Med; 2011 Nov; 30(25):3050-6. PubMed ID: 21805487 [TBL] [Abstract][Full Text] [Related]
8. Marginal false discovery rate control for likelihood-based penalized regression models. Miller RE; Breheny P Biom J; 2019 Jul; 61(4):889-901. PubMed ID: 30742712 [TBL] [Abstract][Full Text] [Related]
9. Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Vrieze SI Psychol Methods; 2012 Jun; 17(2):228-43. PubMed ID: 22309957 [TBL] [Abstract][Full Text] [Related]
11. Variable selection in Bayesian generalized linear-mixed models: an illustration using candidate gene case-control association studies. Tsai MY Biom J; 2015 Mar; 57(2):234-53. PubMed ID: 25267186 [TBL] [Abstract][Full Text] [Related]
12. On the bootstrap and monotone likelihood in the cox proportional hazards regression model. Loughin TM Lifetime Data Anal; 1998; 4(4):393-403. PubMed ID: 9880996 [TBL] [Abstract][Full Text] [Related]
13. Model comparison of generalized linear mixed models. Song XY; Lee SY Stat Med; 2006 May; 25(10):1685-98. PubMed ID: 16220521 [TBL] [Abstract][Full Text] [Related]
15. An empirical Bayes method for estimating epistatic effects of quantitative trait loci. Xu S Biometrics; 2007 Jun; 63(2):513-21. PubMed ID: 17688503 [TBL] [Abstract][Full Text] [Related]
16. Joint partially linear model for longitudinal data with informative drop-outs. Kim S; Zeng D; Taylor JM Biometrics; 2017 Mar; 73(1):72-82. PubMed ID: 27479944 [TBL] [Abstract][Full Text] [Related]
17. Building generalized linear models with ultrahigh dimensional features: A sequentially conditional approach. Zheng Q; Hong HG; Li Y Biometrics; 2020 Mar; 76(1):47-60. PubMed ID: 31350909 [TBL] [Abstract][Full Text] [Related]
18. Semiparametric estimation in generalized linear mixed models with auxiliary covariates: a pairwise likelihood approach. Liu L; Xiang L Biometrics; 2014 Dec; 70(4):910-9. PubMed ID: 25251282 [TBL] [Abstract][Full Text] [Related]
19. Fixed and random effects selection in mixed effects models. Ibrahim JG; Zhu H; Garcia RI; Guo R Biometrics; 2011 Jun; 67(2):495-503. PubMed ID: 20662831 [TBL] [Abstract][Full Text] [Related]
20. Penalized generalized estimating equations for high-dimensional longitudinal data analysis. Wang L; Zhou J; Qu A Biometrics; 2012 Jun; 68(2):353-60. PubMed ID: 21955051 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]