These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161 [TBL] [Abstract][Full Text] [Related]
4. Preparation and characterization of novel functionalized multiwalled carbon nanotubes/chitosan/β-Glycerophosphate scaffolds for bone tissue engineering. Gholizadeh S; Moztarzadeh F; Haghighipour N; Ghazizadeh L; Baghbani F; Shokrgozar MA; Allahyari Z Int J Biol Macromol; 2017 Apr; 97():365-372. PubMed ID: 28064056 [TBL] [Abstract][Full Text] [Related]
5. In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds. Park S; Park J; Jo I; Cho SP; Sung D; Ryu S; Park M; Min KA; Kim J; Hong S; Hong BH; Kim BS Biomaterials; 2015 Jul; 58():93-102. PubMed ID: 25941786 [TBL] [Abstract][Full Text] [Related]
6. Biocompatible chitosan/polyethylene glycol/multi-walled carbon nanotube composite scaffolds for neural tissue engineering. Sang S; Cheng R; Cao Y; Yan Y; Shen Z; Zhao Y; Han Y J Zhejiang Univ Sci B; 2022 Jan; 23(1):58-73. PubMed ID: 35029088 [TBL] [Abstract][Full Text] [Related]
7. Toward Spontaneous Neuronal Differentiation of SH-SY5Y Cells Using Novel Three-Dimensional Electropolymerized Conductive Scaffolds. Dominguez-Alfaro A; Alegret N; Arnaiz B; Salsamendi M; Mecerreyes D; Prato M ACS Appl Mater Interfaces; 2020 Dec; 12(51):57330-57342. PubMed ID: 33306363 [TBL] [Abstract][Full Text] [Related]
8. Bioactive Carbon-Based Hybrid 3D Scaffolds for Osteoblast Growth. Taale M; Schütt F; Zheng K; Mishra YK; Boccaccini AR; Adelung R; Selhuber-Unkel C ACS Appl Mater Interfaces; 2018 Dec; 10(50):43874-43886. PubMed ID: 30395704 [TBL] [Abstract][Full Text] [Related]
9. Fabrication and detection of a novel hybrid conductive scaffold based on alginate/gelatin/carboxylated carbon nanotubes (Alg/Gel/mMWCNTs) for neural tissue engineering. Ma H; Yu K; Wang H; Liu J; Cheng YY; Kang Y; Wang H; Zhang J; Song K Tissue Cell; 2023 Feb; 80():101995. PubMed ID: 36512950 [TBL] [Abstract][Full Text] [Related]
10. Effective nerve cell modulation by electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds. Zhou Z; Liu X; Wu W; Park S; Miller Ii AL; Terzic A; Lu L Biomater Sci; 2018 Aug; 6(9):2375-2385. PubMed ID: 30019709 [TBL] [Abstract][Full Text] [Related]
12. [Research progress on application of carbon nanotubes in bone tissue engineering scaffold]. Yao M; Sheng X; Lin J; Gao J Zhejiang Da Xue Xue Bao Yi Xue Ban; 2016 Mar; 45(2):161-9. PubMed ID: 27273990 [TBL] [Abstract][Full Text] [Related]
13. Three-Dimensional Electroconductive Hyaluronic Acid Hydrogels Incorporated with Carbon Nanotubes and Polypyrrole by Catechol-Mediated Dispersion Enhance Neurogenesis of Human Neural Stem Cells. Shin J; Choi EJ; Cho JH; Cho AN; Jin Y; Yang K; Song C; Cho SW Biomacromolecules; 2017 Oct; 18(10):3060-3072. PubMed ID: 28876908 [TBL] [Abstract][Full Text] [Related]
14. Enhanced Neurite Outgrowth on a Multiblock Conductive Nerve Scaffold with Self-Powered Electrical Stimulation. Sun Y; Quan Q; Meng H; Zheng Y; Peng J; Hu Y; Feng Z; Sang X; Qiao K; He W; Chi X; Zhao L Adv Healthc Mater; 2019 May; 8(10):e1900127. PubMed ID: 30941919 [TBL] [Abstract][Full Text] [Related]
15. Preparation and characterization of electrospun rGO-poly(ester amide) conductive scaffolds. Stone H; Lin S; Mequanint K Mater Sci Eng C Mater Biol Appl; 2019 May; 98():324-332. PubMed ID: 30813034 [TBL] [Abstract][Full Text] [Related]
16. Biocompatible electrically conductive nanofibers from inorganic-organic shape memory polymers. Kai D; Tan MJ; Prabhakaran MP; Chan BQY; Liow SS; Ramakrishna S; Loh XJ Colloids Surf B Biointerfaces; 2016 Dec; 148():557-565. PubMed ID: 27690245 [TBL] [Abstract][Full Text] [Related]
17. Fabrication and characterisation of 3D printed MWCNT composite porous scaffolds for bone regeneration. Huang B; Vyas C; Roberts I; Poutrel QA; Chiang WH; Blaker JJ; Huang Z; Bártolo P Mater Sci Eng C Mater Biol Appl; 2019 May; 98():266-278. PubMed ID: 30813027 [TBL] [Abstract][Full Text] [Related]
19. Carbon nanotubes leading the way forward in new generation 3D tissue engineering. Hopley EL; Salmasi S; Kalaskar DM; Seifalian AM Biotechnol Adv; 2014; 32(5):1000-14. PubMed ID: 24858314 [TBL] [Abstract][Full Text] [Related]
20. Electrostatic flocking of chitosan fibres leads to highly porous, elastic and fully biodegradable anisotropic scaffolds. Gossla E; Tonndorf R; Bernhardt A; Kirsten M; Hund RD; Aibibu D; Cherif C; Gelinsky M Acta Biomater; 2016 Oct; 44():267-76. PubMed ID: 27544815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]