These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30475592)

  • 1. Construction of Enzyme-Cofactor/Mediator Conjugates for Enhanced in Vitro Bioelectricity Generation.
    Song H; Ma C; Zhou W; You C; Zhang YPJ; Zhu Z
    Bioconjug Chem; 2018 Dec; 29(12):3993-3998. PubMed ID: 30475592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The CoFactor database: organic cofactors in enzyme catalysis.
    Fischer JD; Holliday GL; Thornton JM
    Bioinformatics; 2010 Oct; 26(19):2496-7. PubMed ID: 20679331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein immobilization technology for flow biocatalysis.
    Romero-Fernández M; Paradisi F
    Curr Opin Chem Biol; 2020 Apr; 55():1-8. PubMed ID: 31865258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photobiocatalysis for Abiological Transformations.
    Harrison W; Huang X; Zhao H
    Acc Chem Res; 2022 Apr; 55(8):1087-1096. PubMed ID: 35353478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro metabolic engineering of bioelectricity generation by the complete oxidation of glucose.
    Zhu Z; Zhang YP
    Metab Eng; 2017 Jan; 39():110-116. PubMed ID: 27886975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox mediator enhanced simultaneous decolorization of azo dye and bioelectricity generation in air-cathode microbial fuel cell.
    Sun J; Li W; Li Y; Hu Y; Zhang Y
    Bioresour Technol; 2013 Aug; 142():407-14. PubMed ID: 23748088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemomimetic biocatalysis: exploiting the synthetic potential of cofactor-dependent enzymes to create new catalysts.
    Prier CK; Arnold FH
    J Am Chem Soc; 2015 Nov; 137(44):13992-4006. PubMed ID: 26502343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mediated glucose/oxygen enzymatic fuel cell based on printed carbon inks containing aldose dehydrogenase and laccase as anode and cathode.
    Jenkins P; Tuurala S; Vaari A; Valkiainen M; Smolander M; Leech D
    Enzyme Microb Technol; 2012 Mar; 50(3):181-7. PubMed ID: 22305173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modifying the endogenous electron fluxes of Rhodobacter sphaeroides 2.4.1 for improved electricity generation.
    Wong MT; Cheng D; Wang R; Hsing IM
    Enzyme Microb Technol; 2016 May; 86():45-51. PubMed ID: 26992792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges in biocatalysis for enzyme-based biofuel cells.
    Kim J; Jia H; Wang P
    Biotechnol Adv; 2006; 24(3):296-308. PubMed ID: 16403612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding interactive characteristics of bioelectricity generation and reductive decolorization using Proteus hauseri.
    Chen BY; Wang YM; Ng IS
    Bioresour Technol; 2011 Jan; 102(2):1159-65. PubMed ID: 20932743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds.
    Weckbecker A; Gröger H; Hummel W
    Adv Biochem Eng Biotechnol; 2010; 120():195-242. PubMed ID: 20182929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triphenylmethane dyes, an alternative for mediated electronic transfer systems in glucose oxidase biofuel cells.
    La Rotta H CE; Ciniciato GP; González ER
    Enzyme Microb Technol; 2011 May; 48(6-7):487-97. PubMed ID: 22113021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methanol/Oxygen Enzymatic Biofuel Cell Using Laccase and NAD
    Wu G; Gao Y; Zhao D; Ling P; Gao F
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40978-40986. PubMed ID: 29088536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tackling the Challenges of Enzymatic (Bio)Fuel Cells.
    Xiao X; Xia HQ; Wu R; Bai L; Yan L; Magner E; Cosnier S; Lojou E; Zhu Z; Liu A
    Chem Rev; 2019 Aug; 119(16):9509-9558. PubMed ID: 31243999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of bioelectricity generation by manipulation of the electron shuttles synthesis pathway in microbial fuel cells.
    Yong XY; Shi DY; Chen YL; Feng J; Xu L; Zhou J; Wang SY; Yong YC; Sun YM; OuYang PK; Zheng T
    Bioresour Technol; 2014; 152():220-4. PubMed ID: 24292201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From fundamentals to applications of bioelectrocatalysis: bioelectrocatalytic reactions of FAD-dependent glucose dehydrogenase and bilirubin oxidase.
    Tsujimura S
    Biosci Biotechnol Biochem; 2019 Jan; 83(1):39-48. PubMed ID: 30274547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic cofactor regeneration systems: A new perspective on efficiency assessment.
    Bachosz K; Zdarta J; Bilal M; Meyer AS; Jesionowski T
    Sci Total Environ; 2023 Apr; 868():161630. PubMed ID: 36657682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational comparison of mediated current generation capacity of Chlamydomonas reinhardtii in photosynthetic and respiratory growth modes.
    Mao L; Verwoerd WS
    J Biosci Bioeng; 2014 Nov; 118(5):565-74. PubMed ID: 24875305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal, electrochemical and photochemical reactions involving catalytically versatile ene reductase enzymes.
    Toogood HS; Scrutton NS
    Enzymes; 2020; 47():491-515. PubMed ID: 32951833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.