These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30475717)

  • 1. Ultralow Phase Noise 10-MHz Crystal Oscillators.
    Everard J; Burtichelov T; Ng K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Jan; 66(1):181-191. PubMed ID: 30475717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase noise measurements of 10-MHz BVA quartz crystal resonators.
    Sthal F; Mourey M; Marionnet F; Walls WF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):369-73. PubMed ID: 18238552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase noise measurements in dual-mode SC-cut crystal oscillators.
    Watanabe Y; Okabayashi T; Goka S; Sekimoto H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):374-8. PubMed ID: 18238553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultralow-phase-noise oscillators based on BAW resonators.
    Li M; Seok S; Rolland N; Rolland P; El Aabbaoui H; de Foucauld E; Vincent P; Giordano V
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jun; 61(6):903-12. PubMed ID: 24859654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of quartz crystal oscillator flicker-of-frequency and white phase noise (floor) levels and acceleration sensitivity via use of multiple resonators.
    Driscoll MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(4):427-30. PubMed ID: 18263203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-resonator dual-frequency AIN-on-Si MEMS oscillators.
    Lavasani HM; Abdolvand R; Ayazi F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 May; 62(5):802-13. PubMed ID: 25965675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The design and implementation of a 120-MHz Pierce low-phase-noise crystal oscillator.
    Huang X; Wang Y; Fu W; Wang H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1302-6. PubMed ID: 21768015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extremely low phase noise UHF oscillators utilizing high-overtone, bulk-acoustic resonators.
    Driscoll MM; Jelen RA; Matthews N
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(6):774-9. PubMed ID: 18267694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-frequency overtone TCXO based on mixing of dual crystal oscillators.
    Huang X; Wei W; Tan F; Fu W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jun; 54(6):1103-7. PubMed ID: 17571809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Power MEMS-Based Pierce Oscillator Using a 61-MHz Capacitive-Gap Disk Resonator.
    Naing TL; Rocheleau TO; Alon E; Nguyen CT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jul; 67(7):1377-1391. PubMed ID: 31995483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Q Support Transducer MEMS Resonators Enabled Low-Phase-Noise Oscillators.
    Jen HT; Pillai G; Liu SI; Li SS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1387-1398. PubMed ID: 33104499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Five Low-Noise Stable Oscillators Referenced to the Same Multimode AlN/Si MEMS Resonator.
    Kaisar T; Yousuf SMEH; Lee J; Qamar A; Rais-Zadeh M; Mandal S; Feng PX
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Oct; 70(10):1213-1228. PubMed ID: 37669212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HBAR-based 3.6 GHz oscillator with low power consumption and low phase noise.
    Yu H; Lee CY; Pang W; Zhang H; Brannon A; Kitching J; Kim ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):400-3. PubMed ID: 19251528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Sub-mW 18-MHz MEMS Oscillator Based on a 98-dB
    Bouchami A; Elsayed MY; Nabki F
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31200575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of the Close-to-Carrier Phase Noise in a CMOS-MEMS Oscillator Using a Phase Tunable Sustaining-Amplifier.
    Sobreviela G; Riverola M; Torres F; Uranga A; Barniol N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 May; 64(5):888-897. PubMed ID: 28207393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Wideband Oscillator Exploiting Multiple Resonances in Lithium Niobate MEMS Resonator.
    Kourani A; Lu R; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Sep; 67(9):1854-1866. PubMed ID: 32324549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A solid-mounted resonator-oscillator-based 4.596 GHz frequency synthesis.
    Boudot R; Li MD; Giordano V; Rolland N; Rolland PA; Vincent P
    Rev Sci Instrum; 2011 Mar; 82(3):034706. PubMed ID: 21456775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. State-of-the-art RF signal generation from optical frequency division.
    Hati A; Nelson CW; Barnes C; Lirette D; Fortier T; Quinlan F; DeSalvo JA; Ludlow A; Diddams SA; Howe DA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):1796-803. PubMed ID: 24658712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-low phase noise microwave generation with a free-running monolithic femtosecond laser.
    Kalubovilage M; Endo M; Schibli TR
    Opt Express; 2020 Aug; 28(17):25400-25409. PubMed ID: 32907062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact and ultrastable photonic microwave oscillator.
    Giunta M; Yu J; Lessing M; Fischer M; Lezius M; Xie X; Santarelli G; Le Coq Y; Holzwarth R
    Opt Lett; 2020 Mar; 45(5):1140-1143. PubMed ID: 32108790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.