These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 30475725)

  • 1. Identifying TF Binding Motifs from a Partial Set of Target Genes and its Application to Regulatory Network Inference.
    Zhao G; Guo L; Zhang Y; Gao L; Ma LJ
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1211-1221. PubMed ID: 30475725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data.
    Panchy NL; Lloyd JP; Shiu SH
    BMC Genomics; 2020 Feb; 21(1):159. PubMed ID: 32054475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of novel transcription factor regulons through inference of their binding sites.
    Elmas A; Wang X; Samoilov MS
    BMC Bioinformatics; 2015 Sep; 16():299. PubMed ID: 26388177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ant colony optimization based algorithm for identifying gene regulatory elements.
    Liu W; Chen H; Chen L
    Comput Biol Med; 2013 Aug; 43(7):922-32. PubMed ID: 23746735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying promoter features of co-regulated genes with similar network motifs.
    Harari O; del Val C; Romero-Zaliz R; Shin D; Huang H; Groisman EA; Zwir I
    BMC Bioinformatics; 2009 Apr; 10 Suppl 4(Suppl 4):S1. PubMed ID: 19426448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae.
    Hughes JD; Estep PW; Tavazoie S; Church GM
    J Mol Biol; 2000 Mar; 296(5):1205-14. PubMed ID: 10698627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A transdimensional Bayesian model for pattern recognition in DNA sequences.
    Li SM; Wakefield J; Self S
    Biostatistics; 2008 Oct; 9(4):668-85. PubMed ID: 18349034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of regulatory binding sites using minimum spanning trees.
    Olman V; Xu D; Xu Y
    Pac Symp Biocomput; 2003; ():327-38. PubMed ID: 12603039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulatory link mapping between organisms.
    Sharma R; Evans PA; Bhavsar VC
    BMC Syst Biol; 2011 May; 5 Suppl 1(Suppl 1):S4. PubMed ID: 21689479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo motif discovery facilitates identification of interactions between transcription factors in Saccharomyces cerevisiae.
    Chen MJ; Chou LC; Hsieh TT; Lee DD; Liu KW; Yu CY; Oyang YJ; Tsai HK; Chen CY
    Bioinformatics; 2012 Mar; 28(5):701-8. PubMed ID: 22238267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel motif-discovery algorithm to identify co-regulatory motifs in large transcription factor and microRNA co-regulatory networks in human.
    Liang C; Li Y; Luo J; Zhang Z
    Bioinformatics; 2015 Jul; 31(14):2348-55. PubMed ID: 25788622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational identification of transcription factor binding sites by functional analysis of sets of genes sharing overrepresented upstream motifs.
    Corà D; Di Cunto F; Provero P; Silengo L; Caselle M
    BMC Bioinformatics; 2004 May; 5():57. PubMed ID: 15137914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel
    Guo Y; Tian K; Zeng H; Guo X; Gifford DK
    Genome Res; 2018 Jun; 28(6):891-900. PubMed ID: 29654070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Associating transcription factor-binding site motifs with target GO terms and target genes.
    Bodén M; Bailey TL
    Nucleic Acids Res; 2008 Jul; 36(12):4108-17. PubMed ID: 18544606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properly defining the targets of a transcription factor significantly improves the computational identification of cooperative transcription factor pairs in yeast.
    Wu WS; Lai FJ
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S10. PubMed ID: 26679776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model.
    Oliver P; Peralta-Gil M; Tabche ML; Merino E
    BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finding motifs with insufficient number of strong binding sites.
    Leung HC; Chin FY; Yiu SM; Rosenfeld R; Tsang WW
    J Comput Biol; 2005; 12(6):686-701. PubMed ID: 16108711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pattern Discovery in Multilayer Networks.
    Ren Y; Sarkar A; Veltri P; Ay A; Dobra A; Kahveci T
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):741-752. PubMed ID: 34398763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny.
    Siddharthan R; Siggia ED; van Nimwegen E
    PLoS Comput Biol; 2005 Dec; 1(7):e67. PubMed ID: 16477324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NemoProfile as an efficient approach to network motif analysis with instance collection.
    Kim W; Haukap L
    BMC Bioinformatics; 2017 Oct; 18(Suppl 12):423. PubMed ID: 29072139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.