These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 30475730)

  • 1. Low-Voltage OTA-C Filter With an Area- and Power-Efficient OTA for Biosignal Sensor Applications.
    Lee SY; Wang CP; Chu YS
    IEEE Trans Biomed Circuits Syst; 2019 Feb; 13(1):56-67. PubMed ID: 30475730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic Design and Modeling of a OTA-C Filter for Portable ECG Detection.
    Shuenn-Yuh Lee ; Chih-Jen Cheng
    IEEE Trans Biomed Circuits Syst; 2009 Feb; 3(1):53-64. PubMed ID: 23853163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 0.5 V Fifth-Order Butterworth Low-Pass Filter Using Multiple-Input OTA for ECG Applications.
    Kumngern M; Aupithak N; Khateb F; Kulej T
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33371335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing an Inverter-based Operational Transconductance Amplifier-capacitor Filter with Low Power Consumption for Biomedical Applications.
    Yousefinezhad S; Kermani S; Hosseinnia S
    J Med Signals Sens; 2018; 8(1):53-59. PubMed ID: 29535925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1 V Tunable High-Quality Universal Filter Using Multiple-Input Operational Transconductance Amplifiers.
    Kumngern M; Khateb F; Kulej T; Knobnob B
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Area-Efficient and Highly Linear Reconfigurable Continuous-Time Filter for Biomedical Sensor Applications.
    Zhang J; Chan SC; Li H; Zhang N; Wang L
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32272594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 1-nS 1-V Sub-1-µW Linear CMOS OTA with Rail-to-Rail Input for Hz-Band Sensory Interfaces.
    Jakusz J; Jendernalik W; Blakiewicz G; Kłosowski M; Szczepański S
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32532119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a Low Noise Bio-Potential Recorder With High Tolerance to Power-Line Interference Under 0.8 V Power Supply.
    Luo D; Lei J; Zhang M; Wang Z
    IEEE Trans Biomed Circuits Syst; 2020 Dec; 14(6):1421-1430. PubMed ID: 33201829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 1V low power second-order delta-sigma modulator for biomedical signal application.
    Hsu CH; Tang KT
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2008-11. PubMed ID: 24110111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A low power, low noise Programmable Analog Front End (PAFE) for biopotential measurements.
    Adimulam MK; Divya A; Tejaswi K; Srinivas MB
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3844-3847. PubMed ID: 29060736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-power signal processing devices for portable ECG detection.
    Lee SY; Cheng CJ; Wang CP; Kao WC
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1683-6. PubMed ID: 19163002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 0.5 V Multiple-Input Fully Differential Operational Transconductance Amplifier and Its Application to a Fifth-Order Chebyshev Low-Pass Filter for Bio-Signal Processing.
    Kulej T; Khateb F; Kumngern M
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices.
    Hashemi SS; Sawan M; Savaria Y
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):326-35. PubMed ID: 23853177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A CMOS power-efficient low-noise current-mode front-end amplifier for neural signal recording.
    Wu CY; Chen WM; Kuo LT
    IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):107-14. PubMed ID: 23853293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Low Noise Amplifier for Neural Spike Recording Interfaces.
    Ruiz-Amaya J; Rodriguez-Perez A; Delgado-Restituto M
    Sensors (Basel); 2015 Sep; 15(10):25313-35. PubMed ID: 26437411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of ultra-low power biopotential amplifiers for biosignal acquisition applications.
    Zhang F; Holleman J; Otis BP
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):344-55. PubMed ID: 23853179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Power Efficient Low-noise and High Swing CMOS Amplifier for Neural Recording Applications.
    Naderi K; Shad E; Molinas M; Heidari A
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4298-4301. PubMed ID: 33018946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A small-area low-power current readout circuit using two-stage conversion method for 64-channel CNT sensor arrays.
    Shin YS; Lee S; Wee JK; Song I
    IEEE Trans Biomed Circuits Syst; 2013 Jun; 7(3):276-84. PubMed ID: 23853327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 0.09 μW low power front-end biopotential amplifier for biosignal recording.
    Tseng Y; Ho Y; Kao S; Su C
    IEEE Trans Biomed Circuits Syst; 2012 Oct; 6(5):508-16. PubMed ID: 23853237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 0.5-V Nano-Power Shadow Sinusoidal Oscillator Using Bulk-Driven Multiple-Input Operational Transconductance Amplifier.
    Khateb F; Kumngern M; Kulej T; Yavari M
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.