These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 30475805)

  • 1. Spatiotemporal dynamics of reward and punishment effects induced by associative learning.
    Wang H; Kleffner K; Carolan PL; Liotti M
    PLoS One; 2018; 13(11):e0199847. PubMed ID: 30475805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Punishment-related memory-guided attention: Neural dynamics of perceptual modulation.
    Suárez-Suárez S; Rodríguez Holguín S; Cadaveira F; Nobre AC; Doallo S
    Cortex; 2019 Jun; 115():231-245. PubMed ID: 30852377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reward positivity: Reward prediction error or salience prediction error?
    Heydari S; Holroyd CB
    Psychophysiology; 2016 Aug; 53(8):1185-92. PubMed ID: 27184070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Outcome valence and stimulus frequency affect neural responses to rewards and punishments.
    Glazer J; Nusslock R
    Psychophysiology; 2022 Mar; 59(3):e13981. PubMed ID: 34847254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Context dependence of the event-related brain potential associated with reward and punishment.
    Holroyd CB; Larsen JT; Cohen JD
    Psychophysiology; 2004 Mar; 41(2):245-53. PubMed ID: 15032989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Easy to learn, hard to suppress: The impact of learned stimulus-outcome associations on subsequent action control.
    van Wouwe NC; van den Wildenberg WP; Ridderinkhof KR; Claassen DO; Neimat JS; Wylie SA
    Brain Cogn; 2015 Dec; 101():17-34. PubMed ID: 26554843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of reward and punishment on learning from errors in smokers.
    Duehlmeyer L; Levis B; Hester R
    Drug Alcohol Depend; 2018 Jul; 188():32-38. PubMed ID: 29729537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans.
    Krigolson OE; Hassall CD; Handy TC
    J Cogn Neurosci; 2014 Mar; 26(3):635-44. PubMed ID: 24168216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Event-related components of the punishment and reward sensitivity.
    De Pascalis V; Varriale V; D'Antuono L
    Clin Neurophysiol; 2010 Jan; 121(1):60-76. PubMed ID: 19900840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional specialization within the striatum along both the dorsal/ventral and anterior/posterior axes during associative learning via reward and punishment.
    Mattfeld AT; Gluck MA; Stark CE
    Learn Mem; 2011; 18(11):703-11. PubMed ID: 22021252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implicit reward associations impact face processing: Time-resolved evidence from event-related brain potentials and pupil dilations.
    Hammerschmidt W; Kagan I; Kulke L; Schacht A
    Neuroimage; 2018 Oct; 179():557-569. PubMed ID: 29940283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sex differences in the neural underpinnings of social and monetary incentive processing during adolescence.
    Greimel E; Bakos S; Landes I; Töllner T; Bartling J; Kohls G; Schulte-Körne G
    Cogn Affect Behav Neurosci; 2018 Apr; 18(2):296-312. PubMed ID: 29442284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An electrophysiological monetary incentive delay (e-MID) task: a way to decompose the different components of neural response to positive and negative monetary reinforcement.
    Broyd SJ; Richards HJ; Helps SK; Chronaki G; Bamford S; Sonuga-Barke EJ
    J Neurosci Methods; 2012 Jul; 209(1):40-9. PubMed ID: 22659003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning processes underlying avoidance of negative outcomes.
    Andreatta M; Michelmann S; Pauli P; Hewig J
    Psychophysiology; 2017 Apr; 54(4):578-590. PubMed ID: 28176352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural mechanisms of reinforcement learning under mortality threat.
    Gao T; Zhou Y; Li W; Pfabigan DM; Han S
    Soc Neurosci; 2020 Apr; 15(2):170-185. PubMed ID: 31526160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frontal theta oscillatory activity is a common mechanism for the computation of unexpected outcomes and learning rate.
    Mas-Herrero E; Marco-Pallarés J
    J Cogn Neurosci; 2014 Mar; 26(3):447-58. PubMed ID: 24188368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain and autonomic association accompanying stochastic decision-making.
    Ohira H; Ichikawa N; Nomura M; Isowa T; Kimura K; Kanayama N; Fukuyama S; Shinoda J; Yamada J
    Neuroimage; 2010 Jan; 49(1):1024-37. PubMed ID: 19647796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reward and punishment hyposensitivity in problem gamblers: A study of event-related potentials using a principal components analysis.
    Lole L; Gonsalvez CJ; Barry RJ
    Clin Neurophysiol; 2015 Jul; 126(7):1295-309. PubMed ID: 25453608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophysiological correlates of prediction formation in anticipation of reward- and punishment-related feedback signals.
    Wischnewski M; Schutter DJLG
    Psychophysiology; 2019 Aug; 56(8):e13379. PubMed ID: 31025375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociable feedback valence effects on frontal midline theta during reward gain versus threat avoidance learning.
    Stolz C; Pickering AD; Mueller EM
    Psychophysiology; 2023 May; 60(5):e14235. PubMed ID: 36529988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.