BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30476181)

  • 1. Molecular function and biological importance of CNNM family Mg2+ transporters.
    Funato Y; Miki H
    J Biochem; 2019 Mar; 165(3):219-225. PubMed ID: 30476181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The emerging roles and therapeutic potential of cyclin M/CorC family of Mg
    Funato Y; Miki H
    J Pharmacol Sci; 2022 Jan; 148(1):14-18. PubMed ID: 34924118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mg2+ Extrusion from Intestinal Epithelia by CNNM Proteins Is Essential for Gonadogenesis via AMPK-TORC1 Signaling in Caenorhabditis elegans.
    Ishii T; Funato Y; Hashizume O; Yamazaki D; Hirata Y; Nishiwaki K; Kono N; Arai H; Miki H
    PLoS Genet; 2016 Aug; 12(8):e1006276. PubMed ID: 27564576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphocysteine in the PRL-CNNM pathway mediates magnesium homeostasis.
    Gulerez I; Funato Y; Wu H; Yang M; Kozlov G; Miki H; Gehring K
    EMBO Rep; 2016 Dec; 17(12):1890-1900. PubMed ID: 27856537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphatase and Pseudo-Phosphatase Functions of Phosphatase of Regenerating Liver 3 (PRL-3) Are Insensitive to Divalent Metals In Vitro.
    Jolly JT; Cheatham TC; Blackburn JS
    ACS Omega; 2023 Aug; 8(33):30578-30589. PubMed ID: 37636930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascular biology of magnesium and its transporters in hypertension.
    Yogi A; Callera GE; Antunes TT; Tostes RC; Touyz RM
    Magnes Res; 2010 Dec; 23(4):S207-15. PubMed ID: 21199786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PRL3 phosphatase active site is required for binding the putative magnesium transporter CNNM3.
    Zhang H; Kozlov G; Li X; Wu H; Gulerez I; Gehring K
    Sci Rep; 2017 Mar; 7(1):48. PubMed ID: 28246390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mg2+-dependent interactions of ATP with the cystathionine-β-synthase (CBS) domains of a magnesium transporter.
    Hirata Y; Funato Y; Takano Y; Miki H
    J Biol Chem; 2014 May; 289(21):14731-9. PubMed ID: 24706765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excessive Mg
    Hashizume O; Funato Y; Yamazaki D; Miki H
    Antioxid Redox Signal; 2020 Jul; 33(1):20-34. PubMed ID: 32148064
    [No Abstract]   [Full Text] [Related]  

  • 10. Structural Basis of the Oncogenic Interaction of Phosphatase PRL-1 with the Magnesium Transporter CNNM2.
    Giménez-Mascarell P; Oyenarte I; Hardy S; Breiderhoff T; Stuiver M; Kostantin E; Diercks T; Pey AL; Ereño-Orbea J; Martínez-Chantar ML; Khalaf-Nazzal R; Claverie-Martin F; Müller D; Tremblay ML; Martínez-Cruz LA
    J Biol Chem; 2017 Jan; 292(3):786-801. PubMed ID: 27899452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Burst kinetics and CNNM binding are evolutionarily conserved properties of phosphatases of regenerating liver.
    Fakih R; Goldstein RH; Kozlov G; Gehring K
    J Biol Chem; 2023 Apr; 299(4):103055. PubMed ID: 36822330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal function of cyclin M2 Mg2+ transporter maintains blood pressure.
    Funato Y; Yamazaki D; Miki H
    J Hypertens; 2017 Mar; 35(3):585-592. PubMed ID: 28033128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current Structural Knowledge on the CNNM Family of Magnesium Transport Mediators.
    Giménez-Mascarell P; González-Recio I; Fernández-Rodríguez C; Oyenarte I; Müller D; Martínez-Chantar ML; Martínez-Cruz LA
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30845649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnesium-sensitive upstream ORF controls PRL phosphatase expression to mediate energy metabolism.
    Hardy S; Kostantin E; Wang SJ; Hristova T; Galicia-Vázquez G; Baranov PV; Pelletier J; Tremblay ML
    Proc Natl Acad Sci U S A; 2019 Feb; 116(8):2925-2934. PubMed ID: 30718434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of a novel mammalian Mg2+ transporter with channel-like properties.
    Goytain A; Quamme GA
    BMC Genomics; 2005 Apr; 6():48. PubMed ID: 15804357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnesium homeostasis in cattle: absorption and excretion.
    Martens H; Leonhard-Marek S; Röntgen M; Stumpff F
    Nutr Res Rev; 2018 Jun; 31(1):114-130. PubMed ID: 29318981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PRL-1/2 phosphatases control TRPM7 magnesium-dependent function to regulate cellular bioenergetics.
    Hardy S; Zolotarov Y; Coleman J; Roitman S; Khursheed H; Aubry I; Uetani N; Tremblay ML
    Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2221083120. PubMed ID: 36972446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insights into regulation of CNNM-TRPM7 divalent cation uptake by the small GTPase ARL15.
    Mahbub L; Kozlov G; Zong P; Lee EL; Tetteh S; Nethramangalath T; Knorn C; Jiang J; Shahsavan A; Yue L; Runnels L; Gehring K
    Elife; 2023 Jul; 12():. PubMed ID: 37449820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane protein CNNM4-dependent Mg2+ efflux suppresses tumor progression.
    Funato Y; Yamazaki D; Mizukami S; Du L; Kikuchi K; Miki H
    J Clin Invest; 2014 Dec; 124(12):5398-410. PubMed ID: 25347473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphatase-independent role of phosphatase of regenerating liver in cancer progression.
    Funato Y; Hashizume O; Miki H
    Cancer Sci; 2023 Jan; 114(1):25-33. PubMed ID: 36285487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.