These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 30476581)
1. Porous scaffolds from droplet microfluidics for prevention of intrauterine adhesion. Cai Y; Wu F; Yu Y; Liu Y; Shao C; Gu H; Li M; Zhao Y Acta Biomater; 2019 Jan; 84():222-230. PubMed ID: 30476581 [TBL] [Abstract][Full Text] [Related]
2. A collagen scaffold loaded with human umbilical cord-derived mesenchymal stem cells facilitates endometrial regeneration and restores fertility. Xin L; Lin X; Pan Y; Zheng X; Shi L; Zhang Y; Ma L; Gao C; Zhang S Acta Biomater; 2019 Jul; 92():160-171. PubMed ID: 31075515 [TBL] [Abstract][Full Text] [Related]
3. A cost-effectiveness analysis of intrauterine spacers used to prevent the formation of intrauterine adhesions following endometrial cavity surgery. Schmerold L; Martin C; Mehta A; Sobti D; Jaiswal AK; Kumar J; Feldberg I; Munro MG; Lee WC J Med Econ; 2024; 27(1):170-183. PubMed ID: 38131367 [TBL] [Abstract][Full Text] [Related]
4. Injectable, stable, and biodegradable hydrogel with platelet-rich plasma induced by l-serine and sodium alginate for effective treatment of intrauterine adhesions. Xie X; Ao X; Xu R; Lv H; Tan S; Wu J; Zhao L; Wang Y Int J Biol Macromol; 2024 Jun; 270(Pt 1):132363. PubMed ID: 38754675 [TBL] [Abstract][Full Text] [Related]
5. Injectable, degradable, and mechanically adaptive hydrogel induced by L-serine and allyl-functionalized chitosan with platelet-rich plasma for treating intrauterine adhesions. Lv H; Xu R; Xie X; Liang Q; Yuan W; Xia Y; Ao X; Tan S; Zhao L; Wu J; Wang Y Acta Biomater; 2024 Aug; 184():144-155. PubMed ID: 38964528 [TBL] [Abstract][Full Text] [Related]
6. Arrowhead Composite Microneedle Patches with Anisotropic Surface Adhesion for Preventing Intrauterine Adhesions. Zhang X; Chen G; Wang Y; Fan L; Zhao Y Adv Sci (Weinh); 2022 Apr; 9(12):e2104883. PubMed ID: 35187857 [TBL] [Abstract][Full Text] [Related]
7. Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering. Lee GS; Park JH; Shin US; Kim HW Acta Biomater; 2011 Aug; 7(8):3178-86. PubMed ID: 21539944 [TBL] [Abstract][Full Text] [Related]
8. Shape-memory porous alginate scaffolds for regeneration of the annulus fibrosus: effect of TGF-β3 supplementation and oxygen culture conditions. Guillaume O; Daly A; Lennon K; Gansau J; Buckley SF; Buckley CT Acta Biomater; 2014 May; 10(5):1985-95. PubMed ID: 24380722 [TBL] [Abstract][Full Text] [Related]
9. Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates. Hu Y; Ma S; Yang Z; Zhou W; Du Z; Huang J; Yi H; Wang C Colloids Surf B Biointerfaces; 2016 Apr; 140():382-391. PubMed ID: 26774574 [TBL] [Abstract][Full Text] [Related]
10. A mechanically robust and stable estradiol-loaded PHEMA-based hydrogel barrier for intrauterine adhesion treatment. Xie X; Xu R; Ouyang H; Tan S; Guo C; Luo X; Xie Y; Wu D; Dong X; Wu J; Wang Y; Zhao L J Mater Chem B; 2022 Nov; 10(42):8684-8695. PubMed ID: 36254705 [TBL] [Abstract][Full Text] [Related]
11. Immobilization of salvianolic acid B-loaded chitosan microspheres distributed three-dimensionally and homogeneously on the porous surface of hydroxyapatite scaffolds. Li J; Wang Q; Zhi W; Wang J; Feng B; Qu S; Mu Y; Weng J Biomed Mater; 2016 Oct; 11(5):055014. PubMed ID: 27716647 [TBL] [Abstract][Full Text] [Related]
12. Fabrication and characterization of pectin-based three-dimensional porous scaffolds suitable for treatment of peritoneal adhesions. Kulikouskaya V; Kraskouski A; Hileuskaya K; Zhura A; Tratsyak S; Agabekov V J Biomed Mater Res A; 2019 Aug; 107(8):1814-1823. PubMed ID: 31008569 [TBL] [Abstract][Full Text] [Related]
13. Influence of mechanical properties of alginate-based substrates on the performance of Schwann cells in culture. Ning L; Xu Y; Chen X; Schreyer DJ J Biomater Sci Polym Ed; 2016 Jun; 27(9):898-915. PubMed ID: 27012482 [TBL] [Abstract][Full Text] [Related]
14. Abnormal expression of fibrosis markers, estrogen receptor α and stromal derived factor‑1/chemokine (C‑X‑C motif) receptor‑4 axis in intrauterine adhesions. Zhou Q; Wu X; Hu J; Yuan R Int J Mol Med; 2018 Jul; 42(1):81-90. PubMed ID: 29568895 [TBL] [Abstract][Full Text] [Related]
15. Vitamin C plus hydrogel facilitates bone marrow stromal cell-mediated endometrium regeneration in rats. Yang H; Wu S; Feng R; Huang J; Liu L; Liu F; Chen Y Stem Cell Res Ther; 2017 Nov; 8(1):267. PubMed ID: 29157289 [TBL] [Abstract][Full Text] [Related]
16. Therapeutic options and drug delivery strategies for the prevention of intrauterine adhesions. Kou L; Jiang X; Xiao S; Zhao YZ; Yao Q; Chen R J Control Release; 2020 Feb; 318():25-37. PubMed ID: 31830539 [TBL] [Abstract][Full Text] [Related]
17. Preparation of PEG-modified wool keratin/sodium alginate porous scaffolds with elasticity recovery and good biocompatibility. Ji J; Chen G; Liu Z; Li L; Yuan J; Wang P; Xu B; Fan X J Biomed Mater Res B Appl Biomater; 2021 Sep; 109(9):1303-1312. PubMed ID: 33421269 [TBL] [Abstract][Full Text] [Related]
18. Hydrogel, a novel therapeutic and delivery strategy, in the treatment of intrauterine adhesions. Lv H; Wu B; Song J; Wu W; Cai W; Xu J J Mater Chem B; 2021 Sep; 9(33):6536-6552. PubMed ID: 34324619 [TBL] [Abstract][Full Text] [Related]
19. Polysaccharide-based films for the prevention of unwanted postoperative adhesions at biological interfaces. Mayes SM; Davis J; Scott J; Aguilar V; Zawko SA; Swinnea S; Peterson DL; Hardy JG; Schmidt CE Acta Biomater; 2020 Apr; 106():92-101. PubMed ID: 32097711 [TBL] [Abstract][Full Text] [Related]
20. Management of intrauterine adhesions: a novel intrauterine device. Tu CH; Yang XL; Qin XY; Cai LP; Zhang P Med Hypotheses; 2013 Sep; 81(3):394-6. PubMed ID: 23770284 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]