These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 30476702)
21. Drought Tolerance Conferred in Soybean (Glycine max. L) by GmMYB84, a Novel R2R3-MYB Transcription Factor. Wang N; Zhang W; Qin M; Li S; Qiao M; Liu Z; Xiang F Plant Cell Physiol; 2017 Oct; 58(10):1764-1776. PubMed ID: 29016915 [TBL] [Abstract][Full Text] [Related]
22. Genome-Wide Identification of Soybean U-Box E3 Ubiquitin Ligases and Roles of GmPUB8 in Negative Regulation of Drought Stress Response in Arabidopsis. Wang N; Liu Y; Cong Y; Wang T; Zhong X; Yang S; Li Y; Gai J Plant Cell Physiol; 2016 Jun; 57(6):1189-209. PubMed ID: 27057003 [TBL] [Abstract][Full Text] [Related]
23. Comprehensive RNA-seq analysis revealed molecular pathways and genes associated with drought tolerance in wild soybean (Glycine soja Sieb. and Zucc.). Aleem M; Raza MM; Haider MS; Atif RM; Ali Z; Bhat JA; Zhao T Physiol Plant; 2021 Jun; 172(2):707-732. PubMed ID: 32984966 [TBL] [Abstract][Full Text] [Related]
25. Whole-transcriptome response to water stress in a California endemic oak, Quercus lobata. Gugger PF; Peñaloza-Ramírez JM; Wright JW; Sork VL Tree Physiol; 2017 May; 37(5):632-644. PubMed ID: 28008082 [TBL] [Abstract][Full Text] [Related]
26. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. Le DT; Nishiyama R; Watanabe Y; Tanaka M; Seki M; Ham le H; Yamaguchi-Shinozaki K; Shinozaki K; Tran LS PLoS One; 2012; 7(11):e49522. PubMed ID: 23189148 [TBL] [Abstract][Full Text] [Related]
27. Genome-wide characterization and expression analysis of TOPP-type protein phosphatases in soybean (Glycine max L.) reveal the role of GmTOPP13 in drought tolerance. Wang S; Guo J; Zhang Y; Guo Y; Ji W Genes Genomics; 2021 Jul; 43(7):783-796. PubMed ID: 33864615 [TBL] [Abstract][Full Text] [Related]
28. Key Soybean Seedlings Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome Analyses of Two Cultivars. Xuan H; Huang Y; Zhou L; Deng S; Wang C; Xu J; Wang H; Zhao J; Guo N; Xing H Int J Mol Sci; 2022 Mar; 23(5):. PubMed ID: 35270036 [TBL] [Abstract][Full Text] [Related]
29. Comparative transcriptomic analysis reveals the roles of overlapping heat-/drought-responsive genes in poplars exposed to high temperature and drought. Jia J; Zhou J; Shi W; Cao X; Luo J; Polle A; Luo ZB Sci Rep; 2017 Feb; 7():43215. PubMed ID: 28233854 [TBL] [Abstract][Full Text] [Related]
30. A Glycine soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana. Sun X; Luo X; Sun M; Chen C; Ding X; Wang X; Yang S; Yu Q; Jia B; Ji W; Cai H; Zhu Y Plant Cell Physiol; 2014 Jan; 55(1):99-118. PubMed ID: 24272249 [TBL] [Abstract][Full Text] [Related]
31. Comparative transcriptomic analysis reveals common molecular factors responsive to heat and drought stress in Agrostis stolonifera. Xu Y; Huang B Sci Rep; 2018 Oct; 8(1):15181. PubMed ID: 30315246 [TBL] [Abstract][Full Text] [Related]
32. Global analysis of switchgrass (Panicum virgatum L.) transcriptomes in response to interactive effects of drought and heat stresses. Hayford RK; Serba DD; Xie S; Ayyappan V; Thimmapuram J; Saha MC; Wu CH; Kalavacharla VK BMC Plant Biol; 2022 Mar; 22(1):107. PubMed ID: 35260072 [TBL] [Abstract][Full Text] [Related]
33. Synergistic regulatory networks mediated by microRNAs and transcription factors under drought, heat and salt stresses in Oryza Sativa spp. Nigam D; Kumar S; Mishra DC; Rai A; Smita S; Saha A Gene; 2015 Jan; 555(2):127-39. PubMed ID: 25445270 [TBL] [Abstract][Full Text] [Related]
34. Genome-wide identification of calcium-dependent protein kinases in soybean and analyses of their transcriptional responses to insect herbivory and drought stress. Hettenhausen C; Sun G; He Y; Zhuang H; Sun T; Qi J; Wu J Sci Rep; 2016 Jan; 6():18973. PubMed ID: 26733237 [TBL] [Abstract][Full Text] [Related]
35. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress. Liu C; Zhang X; Zhang K; An H; Hu K; Wen J; Shen J; Ma C; Yi B; Tu J; Fu T Int J Mol Sci; 2015 Aug; 16(8):18752-77. PubMed ID: 26270661 [TBL] [Abstract][Full Text] [Related]
36. Transcriptome analysis of heat stress and drought stress in pearl millet based on Pacbio full-length transcriptome sequencing. Sun M; Huang D; Zhang A; Khan I; Yan H; Wang X; Zhang X; Zhang J; Huang L BMC Plant Biol; 2020 Jul; 20(1):323. PubMed ID: 32640987 [TBL] [Abstract][Full Text] [Related]
37. Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions. Li Y; Zhang J; Zhang J; Hao L; Hua J; Duan L; Zhang M; Li Z Plant Biotechnol J; 2013 Aug; 11(6):747-58. PubMed ID: 23581509 [TBL] [Abstract][Full Text] [Related]
38. Identification and expression analysis of cytokinin metabolic genes in soybean under normal and drought conditions in relation to cytokinin levels. Le DT; Nishiyama R; Watanabe Y; Vankova R; Tanaka M; Seki M; Ham le H; Yamaguchi-Shinozaki K; Shinozaki K; Tran LS PLoS One; 2012; 7(8):e42411. PubMed ID: 22900018 [TBL] [Abstract][Full Text] [Related]
39. Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress. Johnson SM; Lim FL; Finkler A; Fromm H; Slabas AR; Knight MR BMC Genomics; 2014 Jun; 15(1):456. PubMed ID: 24916767 [TBL] [Abstract][Full Text] [Related]
40. Overexpression of gma-MIR394a confers tolerance to drought in transgenic Arabidopsis thaliana. Ni Z; Hu Z; Jiang Q; Zhang H Biochem Biophys Res Commun; 2012 Oct; 427(2):330-5. PubMed ID: 23000164 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]