These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30476718)

  • 1. Determination of the small amount of proteins interacting with TiO
    Dong Y; Ji X; Laaksonen A; Cao W; An R; Lu L; Lu X
    Biomaterials; 2019 Feb; 192():368-376. PubMed ID: 30476718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein interactions with layers of TiO
    Kulkarni M; Mazare A; Park J; Gongadze E; Killian MS; Kralj S; von der Mark K; Iglič A; Schmuki P
    Acta Biomater; 2016 Nov; 45():357-366. PubMed ID: 27581395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coadsorption of horseradish peroxidase with thionine on TiO2 nanotubes for biosensing.
    Liu S; Chen A
    Langmuir; 2005 Aug; 21(18):8409-13. PubMed ID: 16114950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotemplated synthesis of Au nanoparticles-TiO2 nanotube junctions for enhanced direct electrochemistry of heme proteins.
    Gao ZD; Liu HF; Li CY; Song YY
    Chem Commun (Camb); 2013 Jan; 49(8):774-6. PubMed ID: 23223512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofilm formation on a TiO₂ nanotube with controlled pore diameter and surface wettability.
    Anitha VC; Lee JH; Lee J; Banerjee AN; Joo SW; Min BK
    Nanotechnology; 2015 Feb; 26(6):065102. PubMed ID: 25604920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time dynamic adsorption processes of cytochrome c on an electrode observed through electrochemical high-speed atomic force microscopy.
    Takeda K; Uchihashi T; Watanabe H; Ishida T; Igarashi K; Nakamura N; Ohno H
    PLoS One; 2015; 10(2):e0116685. PubMed ID: 25671430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface electric field manipulation of the adsorption kinetics and biocatalytic properties of cytochrome c on a 3D macroporous Au electrode.
    Song YY; Li Y; Yang C; Xia XH
    Anal Bioanal Chem; 2008 Jan; 390(1):333-41. PubMed ID: 17955215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Black TiO
    Mazare A; Park J; Simons S; Mohajernia S; Hwang I; Yoo JE; Schneider H; Fischer MJ; Schmuki P
    Acta Biomater; 2019 Oct; 97():681-688. PubMed ID: 31419565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recyclable three-dimensional Ag nanoparticle-decorated TiO2 nanorod arrays for surface-enhanced Raman scattering.
    Fang H; Zhang CX; Liu L; Zhao YM; Xu HJ
    Biosens Bioelectron; 2015 Feb; 64():434-41. PubMed ID: 25282397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochrome c self-assembly on alkanethiol monolayer electrodes as characterized by AFM, IR, QCM, and direct electrochemistry.
    Nakano K; Yoshitake T; Yamashita Y; Bowden EF
    Langmuir; 2007 May; 23(11):6270-5. PubMed ID: 17461603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ controlled growth of well-dispersed gold nanoparticles in TiO2 nanotube arrays as recyclable substrates for surface-enhanced Raman scattering.
    Chen Y; Tian G; Pan K; Tian C; Zhou J; Zhou W; Ren Z; Fu H
    Dalton Trans; 2012 Jan; 41(3):1020-6. PubMed ID: 22083352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-vitro biocompatibility and corrosion resistance of strontium incorporated TiO2 nanotube arrays for orthopaedic applications.
    Indira K; Mudali UK; Rajendran N
    J Biomater Appl; 2014 Jul; 29(1):113-29. PubMed ID: 24346137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TiO2 phytate films as hosts and conduits for cytochrome c electrochemistry.
    McKenzie KJ; Marken F; Opallo M
    Bioelectrochemistry; 2005 Apr; 66(1-2):41-7. PubMed ID: 15833701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemistry of cytochrome c immobilized on cardiolipin-modified electrodes: a probe for protein-lipid interactions.
    Perhirin A; Kraffe E; Marty Y; Quentel F; Elies P; Gloaguen F
    Biochim Biophys Acta; 2013 Mar; 1830(3):2798-803. PubMed ID: 23266496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free-standing arrays of isolated TiO2 nanotubes through supercritical fluid drying.
    Deneault JR; Xiao X; Kang TS; Wang JS; Wai CM; Brown GJ; Durstock MF
    Chemphyschem; 2012 Jan; 13(1):256-60. PubMed ID: 22147515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adhesion and friction forces in biofouling attachments to nanotube- and PEG- patterned TiO
    An R; Dong Y; Zhu J; Rao C
    Colloids Surf B Biointerfaces; 2017 Nov; 159():108-117. PubMed ID: 28780457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface modification of TiO
    Lai M; Jin Z; Su Z
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():490-497. PubMed ID: 28183637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The creation of a biomimetic interface between boron-doped diamond and immobilized proteins.
    Hoffmann R; Kriele A; Obloh H; Tokuda N; Smirnov W; Yang N; Nebel CE
    Biomaterials; 2011 Oct; 32(30):7325-32. PubMed ID: 21741083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cu2O loaded titanate nanotube arrays for simultaneously photoelectrochemical ibuprofen oxidation and hydrogen generation.
    Chang KL; Sun Q; Peng YP; Lai SW; Sung M; Huang CY; Kuo HW; Sun J; Lin YC
    Chemosphere; 2016 May; 150():605-614. PubMed ID: 26899855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly ordered transparent mesoporous TiO2 thin films: an attractive matrix for efficient immobilization and spectroelectrochemical characterization of cytochrome c.
    Renault C; Balland V; Martinez-Ferrero E; Nicole L; Sanchez C; Limoges B
    Chem Commun (Camb); 2009 Dec; (48):7494-6. PubMed ID: 20024257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.