These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30476718)

  • 21. Incorporating TiO2 nanotubes with a peptide of D-amino K122-4 (D) for enhanced mechanical and photocatalytic properties.
    Guo LQ; Hu YW; Yu B; Davis E; Irvin R; Yan XG; Li DY
    Sci Rep; 2016 Feb; 6():22247. PubMed ID: 26915564
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immobilization of cytochrome c and its application as electrochemical biosensors.
    Aghamiri ZS; Mohsennia M; Rafiee-Pour HA
    Talanta; 2018 Jan; 176():195-207. PubMed ID: 28917741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transparent titanium dioxide nanotubes: Processing, characterization, and application in establishing cellular response mechanisms.
    Meyerink JG; Kota D; Wood ST; Crawford GA
    Acta Biomater; 2018 Oct; 79():364-374. PubMed ID: 30172934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced enzymatic reactivity for electrochemically driven drug metabolism by confining cytochrome P450 enzyme in TiO₂ nanotube arrays.
    Lu J; Li H; Cui D; Zhang Y; Liu S
    Anal Chem; 2014 Aug; 86(15):8003-9. PubMed ID: 25014006
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In Situ Raman Investigation of TiO
    Ren Y; Shi X; Xia P; Li S; Lv M; Wang Y; Mao Z
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32316530
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Local delivery of antimicrobial peptides using self-organized TiO2 nanotube arrays for peri-implant infections.
    Ma M; Kazemzadeh-Narbat M; Hui Y; Lu S; Ding C; Chen DD; Hancock RE; Wang R
    J Biomed Mater Res A; 2012 Feb; 100(2):278-85. PubMed ID: 22045618
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface immobilization of gelatin onto TiO
    Lai M; Jin Z; Qiao W
    Colloids Surf B Biointerfaces; 2017 Nov; 159():743-749. PubMed ID: 28881301
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries.
    Han H; Song T; Lee EK; Devadoss A; Jeon Y; Ha J; Chung YC; Choi YM; Jung YG; Paik U
    ACS Nano; 2012 Sep; 6(9):8308-15. PubMed ID: 22935008
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphonium-Based Ionic Liquid Significantly Enhances SERS of Cytochrome
    Dong Y; Gong M; Shah FU; Laaksonen A; An R; Ji X
    ACS Appl Mater Interfaces; 2022 Jun; 14(23):27456-65. PubMed ID: 35642388
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potential-dependent surface-enhanced resonance Raman spectroscopy at nanostructured TiO2 : a case study on cytochrome b5.
    Han XX; Köhler C; Kozuch J; Kuhlmann U; Paasche L; Sivanesan A; Weidinger IM; Hildebrandt P
    Small; 2013 Dec; 9(24):4175-81. PubMed ID: 23861351
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film.
    Zhu A; Luo Y; Tian Y
    Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interfacial electron transfer on cytochrome-c sensitised conformally coated mesoporous TiO2 films.
    Topoglidis E; Lutz T; Durrant JR; Palomares E
    Bioelectrochemistry; 2008 Nov; 74(1):142-8. PubMed ID: 18644749
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Voltammetric and surface-enhanced resonance Raman spectroscopic characterization of cytochrome C adsorbed on a 4-mercaptopyridine monolayer on silver electrodes.
    Millo D; Bonifacio A; Ranieri A; Borsari M; Gooijer C; van der Zwan G
    Langmuir; 2007 Apr; 23(8):4340-5. PubMed ID: 17341099
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CdS quantum dots sensitized solar cells based on free-standing and through-hole TiO2 nanotube arrays.
    Wang X; Zheng J; Sui X; Xie H; Liu B; Zhao X
    Dalton Trans; 2013 Oct; 42(41):14726-32. PubMed ID: 23887557
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of poly(3-hexylthiophene) grafted TiO2 nanotube composite.
    Lu MD; Yang SM
    J Colloid Interface Sci; 2009 May; 333(1):128-34. PubMed ID: 19246046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human serum albumin adsorption on TiO2 from single protein solutions and from plasma.
    Sousa SR; Moradas-Ferreira P; Saramago B; Melo LV; Barbosa MA
    Langmuir; 2004 Oct; 20(22):9745-54. PubMed ID: 15491210
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties.
    Song P; Zhang X; Sun M; Cui X; Lin Y
    Nanoscale; 2012 Mar; 4(5):1800-4. PubMed ID: 22297577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detection of extracellular H2O2 released from human liver cancer cells based on TiO2 nanoneedles with enhanced electron transfer of cytochrome c.
    Luo Y; Liu H; Rui Q; Tian Y
    Anal Chem; 2009 Apr; 81(8):3035-41. PubMed ID: 19290667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly flexible coaxial nanohybrids made from porous TiO2 nanotubes.
    Wang D; Liu Y; Wang C; Zhou F; Liu W
    ACS Nano; 2009 May; 3(5):1249-57. PubMed ID: 19413294
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A co-immobilized mediator and microorganism mediated method combined pretreatment by TiO2 nanotubes used for BOD measurement.
    Liu L; Zhang S; Xing L; Zhao H; Dong S
    Talanta; 2012 May; 93():314-9. PubMed ID: 22483916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.