BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 30476745)

  • 1. Real-time CO
    Peršić V; Đerđ T; Varga M; Hackenberger BK
    Aquat Toxicol; 2019 Jan; 206():154-163. PubMed ID: 30476745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing the acute sensitivity of growth and photosynthetic endpoints in three Lemna species exposed to four herbicides.
    Park J; Brown MT; Depuydt S; Kim JK; Won DS; Han T
    Environ Pollut; 2017 Jan; 220(Pt B):818-827. PubMed ID: 27810110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined effects of elevated CO2 and Cd-contaminated water on growth, photosynthetic response, Cd accumulation and thiolic components status in Lemna minor L.
    Pietrini F; Bianconi D; Massacci A; Iannelli MA
    J Hazard Mater; 2016 May; 309():77-86. PubMed ID: 26875143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of diquat and fomesafen applied alone and in combination with a nonylphenol polyethoxylate adjuvant on Lemna minor in aquatic indoor microcosms.
    Gorzerino C; Quemeneur A; Hillenweck A; Baradat M; Delous G; Ollitrault M; Azam D; Caquet T; Lagadic L
    Ecotoxicol Environ Saf; 2009 Mar; 72(3):802-10. PubMed ID: 18951630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does the effect of herbicide pulse exposure on aquatic plants depend on Kow or mode of action?
    Cedergreen N; Andersen L; Olesen CF; Spliid HH; Streibig JC
    Aquat Toxicol; 2005 Feb; 71(3):261-71. PubMed ID: 15670632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytotoxicity of cobalt ions on the duckweed Lemna minor - Morphology, ion uptake, and starch accumulation.
    Sree KS; Keresztes Á; Mueller-Roeber B; Brandt R; Eberius M; Fischer W; Appenroth KJ
    Chemosphere; 2015 Jul; 131():149-56. PubMed ID: 25840119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can the choice of endpoint lead to contradictory results of mixture-toxicity experiments?
    Cedergreen N; Streibig JC
    Environ Toxicol Chem; 2005 Jul; 24(7):1676-83. PubMed ID: 16050584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing single and joint toxicity of three phenylurea herbicides using Lemna minor and Vibrio fischeri bioassays.
    Gatidou G; Stasinakis AS; Iatrou EI
    Chemosphere; 2015 Jan; 119 Suppl():S69-74. PubMed ID: 24821233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is mixture toxicity measured on a biomarker indicative of what happens on a population level? A study with Lemna minor.
    Cedergreen N; Abbaspoor M; Sørensen H; Streibig JC
    Ecotoxicol Environ Saf; 2007 Jul; 67(3):323-32. PubMed ID: 17261333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel bioassay using root re-growth in Lemna.
    Park A; Kim YJ; Choi EM; Brown MT; Han T
    Aquat Toxicol; 2013 Sep; 140-141():415-24. PubMed ID: 23917640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The enzymatic and antioxidative stress response of Lemna minor to copper and a chloroacetamide herbicide.
    Obermeier M; Schröder CA; Helmreich B; Schröder P
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18495-507. PubMed ID: 26286797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of freshwater algae and duckweeds for phytotoxicity testing.
    Blinova I
    Environ Toxicol; 2004 Aug; 19(4):425-8. PubMed ID: 15269918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of different biological methods for the assessment of ecotoxicological risks.
    Fenske C; Daeschlein G; Günther B; Knauer A; Rudolph P; Schwahn C; Adrian V; von Woedtke T; Rossberg H; Jülich WD; Kramer A
    Int J Hyg Environ Health; 2006 May; 209(3):275-84. PubMed ID: 16459144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba.
    Megateli S; Semsari S; Couderchet M
    Ecotoxicol Environ Saf; 2009 Sep; 72(6):1774-80. PubMed ID: 19505721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential use of Lemna minor for the phytoremediation of isoproturon and glyphosate.
    Dosnon-Olette R; Couderchet M; Oturan MA; Oturan N; Eullaffroy P
    Int J Phytoremediation; 2011 Jul; 13(6):601-12. PubMed ID: 21972506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid activated sludge respiration inhibition test performed by CO2 producing rate using a carbon dioxide sensor.
    Narita N; Takahashi M; Shoji R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(11):1987-96. PubMed ID: 16287636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rapid and sensitive p-benzoquinone-mediated bioassay for determination of heavy metal toxicity in water.
    Yu D; Zhai J; Yong D; Dong S
    Analyst; 2013 Jun; 138(11):3297-302. PubMed ID: 23612368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myriophyllum aquaticum versus Lemna minor: sensitivity and recovery potential after exposure to atrazine.
    Teodorović I; Knežević V; Tunić T; Cučak M; Lečić JN; Leovac A; Tumbas II
    Environ Toxicol Chem; 2012 Feb; 31(2):417-26. PubMed ID: 22095561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes.
    Basile A; Sorbo S; Conte B; Cobianchi RC; Trinchella F; Capasso C; Carginale V
    Int J Phytoremediation; 2012 Apr; 14(4):374-87. PubMed ID: 22567718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dose-response relationships between herbicides with different modes of action and growth of Lemna paucicostata: an improved ecotoxicological method.
    Michel A; Johnson RD; Duke SO; Scheffler BE
    Environ Toxicol Chem; 2004 Apr; 23(4):1074-9. PubMed ID: 15095907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.