BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 3047677)

  • 1. Mutations within the decoding site of Escherichia coli 16S rRNA: growth rate impairment, lethality and intragenic suppression.
    Thomas CL; Gregory RJ; Winslow G; Muto A; Zimmermann RA
    Nucleic Acids Res; 1988 Aug; 16(16):8129-46. PubMed ID: 3047677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dominant lethal mutations in a conserved loop in 16S rRNA.
    Powers T; Noller HF
    Proc Natl Acad Sci U S A; 1990 Feb; 87(3):1042-6. PubMed ID: 2405392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro assembly of 30S and 70S bacterial ribosomes from 16S RNA containing single base substitutions, insertions, and deletions around the decoding site (C1400).
    Denman R; Weitzmann C; Cunningham PR; Nègre D; Nurse K; Colgan J; Pan YC; Miedel M; Ofengand J
    Biochemistry; 1989 Feb; 28(3):1002-11. PubMed ID: 2540813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutants with base changes at the 3'-end of the 16S RNA from Escherichia coli. Construction, expression and functional analysis.
    Rottmann N; Kleuvers B; Atmadja J; Wagner R
    Eur J Biochem; 1988 Oct; 177(1):81-90. PubMed ID: 3053173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-directed mutagenesis of the binding site for ribosomal protein S8 within 16S ribosomal RNA from Escherichia coli.
    Gregory RJ; Zimmermann RA
    Nucleic Acids Res; 1986 Jul; 14(14):5761-76. PubMed ID: 3016664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The involvement of base 1054 in 16S rRNA for UGA stop codon dependent translational termination.
    Hänfler A; Kleuvers B; Göringer HU
    Nucleic Acids Res; 1990 Oct; 18(19):5625-32. PubMed ID: 2216755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UGA suppression by a mutant RNA of the large ribosomal subunit.
    Jemiolo DK; Pagel FT; Murgola EJ
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12309-13. PubMed ID: 8618891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of deletions in the spacer region of the rrnB operon on the transcription of the large ribosomal RNAs from Escherichia coli.
    Szymkowiak C; Wagner R
    Mol Microbiol; 1987 Nov; 1(3):327-34. PubMed ID: 3329282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of base change mutations within an Escherichia coli ribosomal RNA leader region on rRNA maturation and ribosome formation.
    Schäferkordt J; Wagner R
    Nucleic Acids Res; 2001 Aug; 29(16):3394-403. PubMed ID: 11504877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variety of nonsense suppressor phenotypes associated with mutational changes at conserved sites in Escherichia coli ribosomal RNA.
    Murgola EJ; Pagel FT; Hijazi KA; Arkov AL; Xu W; Zhao SQ
    Biochem Cell Biol; 1995; 73(11-12):925-31. PubMed ID: 8722008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characterization of a putative internal promoter sequence between the 16S and the 23S RNA genes within the Escherichia coli rrnB operon.
    Zacharias M; Wagner R
    Mol Microbiol; 1989 Mar; 3(3):405-10. PubMed ID: 2473375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Point mutations in the leader boxA of a plasmid-encoded Escherichia coli rrnB operon cause defective antitermination in vivo.
    Heinrich T; Condon C; Pfeiffer T; Hartmann RK
    J Bacteriol; 1995 Jul; 177(13):3793-800. PubMed ID: 7601845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional importance of the Escherichia coli ribosomal RNA leader box A sequence for post-transcriptional events.
    Theissen G; Behrens SE; Wagner R
    Mol Microbiol; 1990 Oct; 4(10):1667-78. PubMed ID: 1981803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations of non-canonical base-pairs in the 3' major domain of Escherichia coli 16 S ribosomal RNA affect the initiation and elongation of protein synthesis.
    Dragon F; Spickler C; Pinard R; Carrière J; Brakier-Gringas L
    J Mol Biol; 1996 Jun; 259(2):207-15. PubMed ID: 8656423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutation at position 791 in Escherichia coli 16S ribosomal RNA affects processes involved in the initiation of protein synthesis.
    Tapprich WE; Goss DJ; Dahlberg AE
    Proc Natl Acad Sci U S A; 1989 Jul; 86(13):4927-31. PubMed ID: 2662189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Base changes at position 792 of Escherichia coli 16S rRNA affect assembly of 70S ribosomes.
    Santer M; Bennett-Guerrero E; Byahatti S; Czarnecki S; O'Connell D; Meyer M; Khoury J; Cheng X; Schwartz I; McLaughlin J
    Proc Natl Acad Sci U S A; 1990 May; 87(10):3700-4. PubMed ID: 2140191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenotypic heterogeneity of mutational changes at a conserved nucleotide in 16 S ribosomal RNA.
    Pagel FT; Zhao SQ; Hijazi KA; Murgola EJ
    J Mol Biol; 1997 Apr; 267(5):1113-23. PubMed ID: 9150400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of point mutations in the decoding site (C1400) region of 16S ribosomal RNA on the ability of ribosomes to carry out individual steps of protein synthesis.
    Denman R; Nègre D; Cunningham PR; Nurse K; Colgan J; Weitzmann C; Ofengand J
    Biochemistry; 1989 Feb; 28(3):1012-9. PubMed ID: 2540814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations in 16S rRNA in Escherichia coli at methyl-modified sites: G966, C967, and G1207.
    Jemiolo DK; Taurence JS; Giese S
    Nucleic Acids Res; 1991 Aug; 19(15):4259-65. PubMed ID: 1714565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling of rRNA transcription and ribosomal assembly in vivo. Formation of active ribosomal subunits in Escherichia coli requires transcription of rRNA genes by host RNA polymerase which cannot be replaced by bacteriophage T7 RNA polymerase.
    Lewicki BT; Margus T; Remme J; Nierhaus KH
    J Mol Biol; 1993 Jun; 231(3):581-93. PubMed ID: 8515441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.