These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 30476884)
1. Copper ion-assisted gold nanoparticle aggregates for electrochemical signal amplification of lipopolysaccharide sensing. Wang N; Dai H; Sai L; Ma H; Lin M Biosens Bioelectron; 2019 Feb; 126():529-534. PubMed ID: 30476884 [TBL] [Abstract][Full Text] [Related]
2. An electrochemical sensor for bacterial lipopolysaccharide detection based on dual functional Cu Li Z; Dai G; Luo F; Lu Y; Zhang J; Chu Z; He P; Zhang F; Wang Q Mikrochim Acta; 2020 Jun; 187(7):415. PubMed ID: 32607635 [TBL] [Abstract][Full Text] [Related]
3. Gold atomic cluster mediated electrochemical aptasensor for the detection of lipopolysaccharide. Posha B; Nambiar SR; Sandhyarani N Biosens Bioelectron; 2018 Mar; 101():199-205. PubMed ID: 29078201 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical endotoxin aptasensor based on a metal-organic framework labeled analytical platform. Duan Y; Wang N; Huang Z; Dai H; Xu L; Sun S; Ma H; Lin M Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110501. PubMed ID: 31923942 [TBL] [Abstract][Full Text] [Related]
5. An ultrasensitive signal-on electrochemical aptasensor for ochratoxin A determination based on DNA controlled layer-by-layer assembly of dual gold nanoparticle conjugates. Chen W; Yan C; Cheng L; Yao L; Xue F; Xu J Biosens Bioelectron; 2018 Oct; 117():845-851. PubMed ID: 30096739 [TBL] [Abstract][Full Text] [Related]
6. A novel sandwich-type electrochemical aptasensor based on GR-3D Au and aptamer-AuNPs-HRP for sensitive detection of oxytetracycline. Liu S; Wang Y; Xu W; Leng X; Wang H; Guo Y; Huang J Biosens Bioelectron; 2017 Feb; 88():181-187. PubMed ID: 27544787 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of pioneering 3D sakura-shaped metal-organic coordination polymers Cu@L-Glu phenomenal for signal amplification in highly sensitive detection of zearalenone. Ji X; Yu C; Wen Y; Chen J; Yu Y; Zhang C; Gao R; Mu X; He J Biosens Bioelectron; 2019 Mar; 129():139-146. PubMed ID: 30690178 [TBL] [Abstract][Full Text] [Related]
8. Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electrochemical sensing of mercury ions based on thymine-mercury-thymine structure. Wang N; Lin M; Dai H; Ma H Biosens Bioelectron; 2016 May; 79():320-6. PubMed ID: 26720921 [TBL] [Abstract][Full Text] [Related]
9. Ultrasensitive electrochemical detection of protein tyrosine kinase-7 by gold nanoparticles and methylene blue assisted signal amplification. Miao X; Li Z; Zhu A; Feng Z; Tian J; Peng X Biosens Bioelectron; 2016 Sep; 83():39-44. PubMed ID: 27101533 [TBL] [Abstract][Full Text] [Related]
10. Cu-Based Metal-Organic Frameworks as a Catalyst To Construct a Ratiometric Electrochemical Aptasensor for Sensitive Lipopolysaccharide Detection. Shen WJ; Zhuo Y; Chai YQ; Yuan R Anal Chem; 2015 Nov; 87(22):11345-52. PubMed ID: 26465256 [TBL] [Abstract][Full Text] [Related]
11. Aptasensor based on gold nanostructure-decorated 2D Cu metal-organic framework nanosheets for highly sensitive and specific electrochemical lipopolysaccharide detection. Tong Y; Chen M; Huang X; Xu Y; Zhang L; Yu Z; Liu SY; Dai Z Mikrochim Acta; 2024 Aug; 191(8):500. PubMed ID: 39088046 [TBL] [Abstract][Full Text] [Related]
12. Aptamer-based electrochemical biosensor by using Au-Pt nanoparticles, carbon nanotubes and acriflavine platform. Beiranvand ZS; Abbasi AR; Dehdashtian S; Karimi Z; Azadbakht A Anal Biochem; 2017 Feb; 518():35-45. PubMed ID: 27789234 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical aptasensor based on DNA-templated copper nanoparticles and RecJf exonuclease-assisted target recycling for lipopolysaccharide detection. Xie S; Liang S; Tian L; Ding G; He M; Li H; Yang H Anal Methods; 2024 Jan; 16(3):396-402. PubMed ID: 38131415 [TBL] [Abstract][Full Text] [Related]
14. Novel electrochemical aptasensor for ultrasensitive detection of sulfadimidine based on covalently linked multi-walled carbon nanotubes and in situ synthesized gold nanoparticle composites. He B; Du G Anal Bioanal Chem; 2018 May; 410(12):2901-2910. PubMed ID: 29500483 [TBL] [Abstract][Full Text] [Related]
15. A repeatable assembling and disassembling electrochemical aptamer cytosensor for ultrasensitive and highly selective detection of human liver cancer cells. Sun D; Lu J; Chen Z; Yu Y; Mo M Anal Chim Acta; 2015 Jul; 885():166-73. PubMed ID: 26231902 [TBL] [Abstract][Full Text] [Related]
16. DNA-templated copper nanoparticles as signalling probe for electrochemical determination of microRNA-222. Wang Y; Meng W; Chen X; Zhang Y Mikrochim Acta; 2019 Dec; 187(1):4. PubMed ID: 31797053 [TBL] [Abstract][Full Text] [Related]
17. Novel electrochemical dual-aptamer-based sandwich biosensor using molybdenum disulfide/carbon aerogel composites and Au nanoparticles for signal amplification. Fang LX; Huang KJ; Liu Y Biosens Bioelectron; 2015 Sep; 71():171-178. PubMed ID: 25909336 [TBL] [Abstract][Full Text] [Related]
18. Novel voltammetric and impedimetric sensor for femtomolar determination of lysozyme based on metal-chelate affinity immobilized onto gold nanoparticles. Arabzadeh A; Salimi A Biosens Bioelectron; 2015 Dec; 74():270-6. PubMed ID: 26143467 [TBL] [Abstract][Full Text] [Related]
19. Ultrasensitive flow injection chemiluminescence detection of DNA hybridization using signal DNA probe modified with Au and CuS nanoparticles. Zhang S; Zhong H; Ding C Anal Chem; 2008 Oct; 80(19):7206-12. PubMed ID: 18759495 [TBL] [Abstract][Full Text] [Related]
20. A signal-on electrochemical aptasensor for ultrasensitive detection of endotoxin using three-way DNA junction-aided enzymatic recycling and graphene nanohybrid for amplification. Bai L; Chai Y; Pu X; Yuan R Nanoscale; 2014 Mar; 6(5):2902-8. PubMed ID: 24477782 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]