BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 30477208)

  • 1. Applications of CRISPR/Cas9 for the Treatment of Duchenne Muscular Dystrophy.
    Lim KRQ; Yoon C; Yokota T
    J Pers Med; 2018 Nov; 8(4):. PubMed ID: 30477208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Restoration of dystrophin expression and correction of Duchenne muscular dystrophy by genome editing.
    Aslesh T; Erkut E; Yokota T
    Expert Opin Biol Ther; 2021 Aug; 21(8):1049-1061. PubMed ID: 33401973
    [No Abstract]   [Full Text] [Related]  

  • 3. Creation of a Novel Humanized Dystrophic Mouse Model of Duchenne Muscular Dystrophy and Application of a CRISPR/Cas9 Gene Editing Therapy.
    Young CS; Mokhonova E; Quinonez M; Pyle AD; Spencer MJ
    J Neuromuscul Dis; 2017; 4(2):139-145. PubMed ID: 28505980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD.
    Wang JZ; Wu P; Shi ZM; Xu YL; Liu ZJ
    Brain Dev; 2017 Aug; 39(7):547-556. PubMed ID: 28390761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A humanized knockin mouse model of Duchenne muscular dystrophy and its correction by CRISPR-Cas9 therapeutic gene editing.
    Zhang Y; Li H; Nishiyama T; McAnally JR; Sanchez-Ortiz E; Huang J; Mammen PPA; Bassel-Duby R; Olson EN
    Mol Ther Nucleic Acids; 2022 Sep; 29():525-537. PubMed ID: 36035749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of CRISPR/Cas9 in the treatment of Duchenne muscular dystrophy and its delivery strategies.
    Agrawal P; Harish V; Mohd S; Singh SK; Tewari D; Tatiparthi R; Harshita ; Vishwas S; Sutrapu S; Dua K; Gulati M
    Life Sci; 2023 Oct; 330():122003. PubMed ID: 37544379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR Therapeutics for Duchenne Muscular Dystrophy.
    Erkut E; Yokota T
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene editing of Duchenne muscular dystrophy using biomineralization-based spCas9 variant nanoparticles.
    Li S; Du M; Deng J; Deng G; Li J; Song Z; Han H
    Acta Biomater; 2022 Dec; 154():597-607. PubMed ID: 36243370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene modification strategies using AO-mediated exon skipping and CRISPR/Cas9 as potential therapies for Duchenne muscular dystrophy patients.
    Solberg MH; Shariatzadeh M; Wilson SL
    Eng Biol; 2020 Dec; 4(3):37-42. PubMed ID: 36968157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapeutic Applications of CRISPR/Cas for Duchenne Muscular Dystrophy.
    Wong TWY; Cohn RD
    Curr Gene Ther; 2017; 17(4):301-308. PubMed ID: 29173172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promising therapeutic approaches using CRISPR/Cas9 genome editing technology in the treatment of Duchenne muscular dystrophy.
    Mollanoori H; Rahmati Y; Hassani B; Havasi Mehr M; Teimourian S
    Genes Dis; 2021 Mar; 8(2):146-156. PubMed ID: 33997161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creation of DMD Muscle Cell Model Using CRISPR-Cas9 Genome Editing to Test the Efficacy of Antisense-Mediated Exon Skipping.
    Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():165-171. PubMed ID: 30171541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular Reprogramming, Genome Editing, and Alternative CRISPR Cas9 Technologies for Precise Gene Therapy of Duchenne Muscular Dystrophy.
    Gee P; Xu H; Hotta A
    Stem Cells Int; 2017; 2017():8765154. PubMed ID: 28607562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting Duchenne muscular dystrophy by skipping DMD exon 45 with base editors.
    Gapinske M; Winter J; Swami D; Gapinske L; Woods WS; Shirguppe S; Miskalis A; Busza A; Joulani D; Kao CJ; Kostan K; Bigot A; Bashir R; Perez-Pinera P
    Mol Ther Nucleic Acids; 2023 Sep; 33():572-586. PubMed ID: 37637209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel human muscle cell model of Duchenne muscular dystrophy created by CRISPR/Cas9 and evaluation of antisense-mediated exon skipping.
    Shimo T; Hosoki K; Nakatsuji Y; Yokota T; Obika S
    J Hum Genet; 2018 Mar; 63(3):365-375. PubMed ID: 29339778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prevention of early-onset cardiomyopathy in
    Rok M; Wong TWY; Maino E; Ahmed A; Yang G; Hyatt E; Lindsay K; Fatehi S; Marks R; Delgado-OlguĂ­n P; Ivakine EA; Cohn RD
    Mol Ther Methods Clin Dev; 2023 Sep; 30():246-258. PubMed ID: 37545481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Single CRISPR-Cas9 Deletion Strategy that Targets the Majority of DMD Patients Restores Dystrophin Function in hiPSC-Derived Muscle Cells.
    Young CS; Hicks MR; Ermolova NV; Nakano H; Jan M; Younesi S; Karumbayaram S; Kumagai-Cresse C; Wang D; Zack JA; Kohn DB; Nakano A; Nelson SF; Miceli MC; Spencer MJ; Pyle AD
    Cell Stem Cell; 2016 Apr; 18(4):533-40. PubMed ID: 26877224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional Rescue of Dystrophin Deficiency in Mice Caused by Frameshift Mutations Using Campylobacter jejuni Cas9.
    Koo T; Lu-Nguyen NB; Malerba A; Kim E; Kim D; Cappellari O; Cho HY; Dickson G; Popplewell L; Kim JS
    Mol Ther; 2018 Jun; 26(6):1529-1538. PubMed ID: 29730196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A consolidated AAV system for single-cut CRISPR correction of a common Duchenne muscular dystrophy mutation.
    Zhang Y; Nishiyama T; Li H; Huang J; Atmanli A; Sanchez-Ortiz E; Wang Z; Mireault AA; Mammen PPA; Bassel-Duby R; Olson EN
    Mol Ther Methods Clin Dev; 2021 Sep; 22():122-132. PubMed ID: 34485599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Common therapeutic advances for Duchenne muscular dystrophy (DMD).
    Salmaninejad A; Jafari Abarghan Y; Bozorg Qomi S; Bayat H; Yousefi M; Azhdari S; Talebi S; Mojarrad M
    Int J Neurosci; 2021 Apr; 131(4):370-389. PubMed ID: 32241218
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 22.