These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30477241)

  • 1. High Frequency Hysteresis Losses on γ-Fe₂O₃ and Fe₃O₄: Susceptibility as a Magnetic Stamp for Chain Formation.
    Morales I; Costo R; Mille N; Silva GBD; Carrey J; Hernando A; Presa P
    Nanomaterials (Basel); 2018 Nov; 8(12):. PubMed ID: 30477241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.
    Sadat ME; Patel R; Sookoor J; Bud'ko SL; Ewing RC; Zhang J; Xu H; Wang Y; Pauletti GM; Mast DB; Shi D
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():52-63. PubMed ID: 25063092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Magnetite Nanoparticles Size and Concentration on Hyperthermia under Various Field Frequencies and Strengths.
    Narayanaswamy V; Sambasivam S; Saj A; Alaabed S; Issa B; Al-Omari IA; Obaidat IM
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33557107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hysteresis losses and specific absorption rate measurements in magnetic nanoparticles for hyperthermia applications.
    Coïsson M; Barrera G; Celegato F; Martino L; Kane SN; Raghuvanshi S; Vinai F; Tiberto P
    Biochim Biophys Acta Gen Subj; 2017 Jun; 1861(6):1545-1558. PubMed ID: 27986628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry).
    Garaio E; Sandre O; Collantes JM; Garcia JA; Mornet S; Plazaola F
    Nanotechnology; 2015 Jan; 26(1):015704. PubMed ID: 25490677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Magnetosomes in Magnetic Hyperthermia.
    Usov NA; Gubanova EM
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32635626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the potential of the dynamic hysteresis loops via high field, high frequency and temperature adjustable AC magnetometer for magnetic hyperthermia characterization.
    Rodrigo I; Castellanos-Rubio I; Garaio E; Arriortua OK; Insausti M; Orue I; García JÁ; Plazaola F
    Int J Hyperthermia; 2020; 37(1):976-991. PubMed ID: 32781865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maghemite (γ-Fe
    Lemine OM; Madkhali N; Alshammari M; Algessair S; Gismelseed A; El Mir L; Hjiri M; Yousif AA; El-Boubbou K
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of the Magnetic Hyperthermia Response Using Different Superparamagnetic Iron Oxide Nanoparticle Morphologies.
    Reyes-Ortega F; Delgado ÁV; Iglesias GR
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33802441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.
    Céspedes E; Byrne JM; Farrow N; Moise S; Coker VS; Bencsik M; Lloyd JR; Telling ND
    Nanoscale; 2014 Nov; 6(21):12958-70. PubMed ID: 25232657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia.
    Shah RR; Davis TP; Glover AL; Nikles DE; Brazel CS
    J Magn Magn Mater; 2015 Aug; 387():96-106. PubMed ID: 25960599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GO-Functionalized Large Magnetic Iron Oxide Nanoparticles with Enhanced Colloidal Stability and Hyperthermia Performance.
    Sugumaran PJ; Liu XL; Herng TS; Peng E; Ding J
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22703-22713. PubMed ID: 31244027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia.
    Hergt R; Dutz S; Röder M
    J Phys Condens Matter; 2008 Sep; 20(38):385214. PubMed ID: 21693832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling Magnetization Reversal and Hyperthermia Efficiency in Core-Shell Iron-Iron Oxide Magnetic Nanoparticles by Tuning the Interphase Coupling.
    Simeonidis K; Martinez-Boubeta C; Serantes D; Ruta S; Chubykalo-Fesenko O; Chantrell R; Oró-Solé J; Balcells L; Kamzin AS; Nazipov RA; Makridis A; Angelakeris M
    ACS Appl Nano Mater; 2020 May; 3(5):4465-4476. PubMed ID: 32582880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of synthesis and peptization steps to obtain iron oxide nanoparticles with high energy dissipation rates.
    Mérida F; Chiu-Lam A; Bohórquez AC; Maldonado-Camargo L; Pérez ME; Pericchi L; Torres-Lugo M; Rinaldi C
    J Magn Magn Mater; 2015 Nov; 394():361-371. PubMed ID: 26273124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arrangement at the nanoscale: Effect on magnetic particle hyperthermia.
    Myrovali E; Maniotis N; Makridis A; Terzopoulou A; Ntomprougkidis V; Simeonidis K; Sakellari D; Kalogirou O; Samaras T; Salikhov R; Spasova M; Farle M; Wiedwald U; Angelakeris M
    Sci Rep; 2016 Nov; 6():37934. PubMed ID: 27897195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron Oxide Nanorings and Nanotubes for Magnetic Hyperthermia: The Problem of Intraparticle Interactions.
    Das R; Masa JA; Kalappattil V; Nemati Z; Rodrigo I; Garaio E; García JÁ; Phan MH; Srikanth H
    Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34073685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-Range Ordering Effects in Magnetic Nanoparticles.
    Myrovali E; Papadopoulos K; Iglesias I; Spasova M; Farle M; Wiedwald U; Angelakeris M
    ACS Appl Mater Interfaces; 2021 May; 13(18):21602-21612. PubMed ID: 33929817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heating ability of elongated magnetic nanoparticles.
    Gubanova EM; Usov NA; Oleinikov VA
    Beilstein J Nanotechnol; 2021; 12():1404-1412. PubMed ID: 35028264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heating Efficiency of Triple Vortex State Cylindrical Magnetic Nanoparticles.
    Wong W; Gan WL; Teo YK; Lew WS
    Nanoscale Res Lett; 2019 Dec; 14(1):376. PubMed ID: 31845087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.