BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 30477718)

  • 1. High performance liquid chromatography as a molecular probe in quantitative structure-retention relationships studies of selected lipid classes on polar-embedded stationary phases.
    Buszewski B; Walczak J; Skoczylas M; Haddad PR
    J Chromatogr A; 2019 Jan; 1585():105-112. PubMed ID: 30477718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of retention in hydrophilic interaction liquid chromatography using solute molecular descriptors based on chemical structures.
    Taraji M; Haddad PR; Amos RI; Talebi M; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2017 Feb; 1486():59-67. PubMed ID: 28049585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling of retention of pesticides in reversed-phase high-performance liquid chromatography: quantitative structure-retention relationships based on solute quantum-chemical descriptors and experimental (solvatochromic and spin-probe) mobile phase descriptors.
    D'Archivio AA; Ruggieri F; Mazzeo P; Tettamanti E
    Anal Chim Acta; 2007 Jun; 593(2):140-51. PubMed ID: 17543600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanism of retention in reversed-phase high-performance liquid chromatography and classification of modern stationary phases by using quantitative structure-retention relationships.
    Kaliszan R; van Straten MA; Markuszewski M; Cramers CA; Claessens HA
    J Chromatogr A; 1999 Sep; 855(2):455-86. PubMed ID: 10519086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of separation on cholesterol-silica stationary phase for high-performance liquid chromatography as revealed by analysis of quantitative structure-retention relationships.
    Al-Haj MA; Haber P; Kaliszan R; Buszewski B; Jezierska M; Chilmonzyk Z
    J Pharm Biomed Anal; 1998 Dec; 18(4-5):721-8. PubMed ID: 9919974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of pressure on the retention of resorcinarene-based cavitands.
    Prauda I; Bartó E; Felinger A
    J Chromatogr A; 2018 Feb; 1535():123-128. PubMed ID: 29331225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retention prediction in reversed phase high performance liquid chromatography using quantitative structure-retention relationships applied to the Hydrophobic Subtraction Model.
    Wen Y; Talebi M; Amos RIJ; Szucs R; Dolan JW; Pohl CA; Haddad PR
    J Chromatogr A; 2018 Mar; 1541():1-11. PubMed ID: 29454529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insight into the retention processes of phthalate metabolites on different liquid chromatography stationary phases for the development of improved separation methods.
    Gómara B; Lebrón-Aguilar R; González MJ; Quintanilla-López JE
    J Chromatogr A; 2015 Dec; 1423():86-95. PubMed ID: 26553955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A polyacrylamide-based silica stationary phase for the separation of carbohydrates using alcohols as the weak eluent in hydrophilic interaction liquid chromatography.
    Cai J; Cheng L; Zhao J; Fu Q; Jin Y; Ke Y; Liang X
    J Chromatogr A; 2017 Nov; 1524():153-159. PubMed ID: 29030034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative structure-retention relationships in comparative studies of behavior of stationary phases under high-performance liquid chromatography and capillary electrochromatography conditions.
    Jiskra J; Claessens HA; Cramers CA; Kaliszan R
    J Chromatogr A; 2002 Nov; 977(2):193-206. PubMed ID: 12456109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophilic interaction chromatography in nonaqueous elution mode for separation of hydrophilic analytes on silica-based packings with noncharged polar bondings.
    Bicker W; Wu J; Lämmerhofer M; Lindner W
    J Sep Sci; 2008 Sep; 31(16-17):2971-87. PubMed ID: 18785146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anthracenyl polar embedded stationary phases with enhanced aromatic selectivity. Part II: A density functional theory study.
    Mignot M; Schammé B; Tognetti V; Joubert L; Cardinael P; Peulon-Agasse V
    J Chromatogr A; 2017 Oct; 1519():91-99. PubMed ID: 28911940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative characteristics of HPLC columns based on quantitative structure-retention relationships (QSRR) and hydrophobic-subtraction model.
    Baczek T; Kaliszan R; Novotná K; Jandera P
    J Chromatogr A; 2005 May; 1075(1-2):109-15. PubMed ID: 15974124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of linear solvation energy relationships and principal component analysis methods for the prediction of the retention behaviour of E-resveratrol analogues with substituted silica hydride stationary phases.
    Danylec B; Kulsing C; Topete JC; Matyska MT; Pesek JJ; Boysen RI; Hearn MTW
    Anal Chim Acta; 2019 Dec; 1090():159-171. PubMed ID: 31655641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation into the phenomena affecting the retention behavior of basic analytes in chaotropic chromatography: Joint effects of the most relevant chromatographic factors and analytes' molecular properties.
    Čolović J; Kalinić M; Vemić A; Erić S; Malenović A
    J Chromatogr A; 2015 Dec; 1425():150-7. PubMed ID: 26610616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of water on the retention on diol and amide columns in hydrophilic interaction liquid chromatography.
    Jandera P; Janás P; Škeříková V; Urban J
    J Sep Sci; 2017 Apr; 40(7):1434-1448. PubMed ID: 28133899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction and mechanism elucidation of analyte retention on phospholipid stationary phases (IAM-HPLC) by in silico calculated physico-chemical descriptors.
    Russo G; Grumetto L; Barbato F; Vistoli G; Pedretti A
    Eur J Pharm Sci; 2017 Mar; 99():173-184. PubMed ID: 27919703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative evaluation of high-performance liquid chromatography stationary phases used for the separation of peptides in terms of quantitative structure-retention relationships.
    Michel M; Baczek T; Studzińska S; Bodzioch K; Jonsson T; Kaliszan R; Buszewski B
    J Chromatogr A; 2007 Dec; 1175(1):49-54. PubMed ID: 17980378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation properties of novel and commercial polar stationary phases in hydrophilic interaction and reversed-phase liquid chromatography mode.
    Wu J; Bicker W; Lindner W
    J Sep Sci; 2008 May; 31(9):1492-503. PubMed ID: 18461572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative structure - retention relationships of amino acids on the amino acid- and peptide-silica stationary phases for liquid chromatography.
    Skoczylas M; Bocian S; Buszewski B
    J Chromatogr A; 2020 Jan; 1609():460514. PubMed ID: 31561969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.