These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 30478237)

  • 1. Deep scanning lysine metabolism in
    Bassalo MC; Garst AD; Choudhury A; Grau WC; Oh EJ; Spindler E; Lipscomb T; Gill RT
    Mol Syst Biol; 2018 Nov; 14(11):e8371. PubMed ID: 30478237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli.
    Kim SK; Seong W; Han GH; Lee DH; Lee SG
    Microb Cell Fact; 2017 Nov; 16(1):188. PubMed ID: 29100516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of an Escherichia coli lysA insertion targeted mutant using phenotype arrays.
    Li X; Ricke SC
    Bioresour Technol; 2003 Sep; 89(3):249-53. PubMed ID: 12798115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving lysine production through construction of an Escherichia coli enzyme-constrained model.
    Ye C; Luo Q; Guo L; Gao C; Xu N; Zhang L; Liu L; Chen X
    Biotechnol Bioeng; 2020 Nov; 117(11):3533-3544. PubMed ID: 32648933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Easy regulation of metabolic flux in Escherichia coli using an endogenous type I-E CRISPR-Cas system.
    Chang Y; Su T; Qi Q; Liang Q
    Microb Cell Fact; 2016 Nov; 15(1):195. PubMed ID: 27842593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9 recombineering-mediated deep mutational scanning of essential genes in Escherichia coli.
    Choudhury A; Fenster JA; Fankhauser RG; Kaar JL; Tenaillon O; Gill RT
    Mol Syst Biol; 2020 Mar; 16(3):e9265. PubMed ID: 32175691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique and its application to improve the Escherichia coli xylose utilization pathway.
    Zhu X; Zhao D; Qiu H; Fan F; Man S; Bi C; Zhang X
    Metab Eng; 2017 Sep; 43(Pt A):37-45. PubMed ID: 28800965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-resolved imaging-based CRISPRi screening.
    Camsund D; Lawson MJ; Larsson J; Jones D; Zikrin S; Fange D; Elf J
    Nat Methods; 2020 Jan; 17(1):86-92. PubMed ID: 31740817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed combinatorial mutagenesis of Escherichia coli for complex phenotype engineering.
    Liu R; Liang L; Garst AD; Choudhury A; Nogué VSI; Beckham GT; Gill RT
    Metab Eng; 2018 May; 47():10-20. PubMed ID: 29477855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Escherichia coli BL21 strain using simplified CRISPR-Cas9 and asymmetric homology arms recombineering.
    Shukal S; Lim XH; Zhang C; Chen X
    Microb Cell Fact; 2022 Feb; 21(1):19. PubMed ID: 35123478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct Paths for Basic Amino Acid Export in Escherichia coli: YbjE (LysO) Mediates Export of L-Lysine.
    Pathania A; Sardesai AA
    J Bacteriol; 2015 Jun; 197(12):2036-47. PubMed ID: 25845847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9/sgRNA-mediated targeted gene modification confirms the cause-effect relationship between gyrA mutation and quinolone resistance in Escherichia coli.
    Qiu H; Gong J; Butaye P; Lu G; Huang K; Zhu G; Zhang J; Hathcock T; Cheng D; Wang C
    FEMS Microbiol Lett; 2018 Jul; 365(13):. PubMed ID: 29767711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary plasticity and innovations in complex metabolic reaction networks.
    Matias Rodrigues JF; Wagner A
    PLoS Comput Biol; 2009 Dec; 5(12):e1000613. PubMed ID: 20019795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution combined with genomic study elucidates genetic bases of isobutanol tolerance in Escherichia coli.
    Minty JJ; Lesnefsky AA; Lin F; Chen Y; Zaroff TA; Veloso AB; Xie B; McConnell CA; Ward RJ; Schwartz DR; Rouillard JM; Gao Y; Gulari E; Lin XN
    Microb Cell Fact; 2011 Mar; 10():18. PubMed ID: 21435272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis.
    Wu MY; Sung LY; Li H; Huang CH; Hu YC
    ACS Synth Biol; 2017 Dec; 6(12):2350-2361. PubMed ID: 28854333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene Dispensability in Escherichia coli Grown in Thirty Different Carbon Environments.
    Tong M; French S; El Zahed SS; Ong WK; Karp PD; Brown ED
    mBio; 2020 Sep; 11(5):. PubMed ID: 32994326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive profiling of protein lysine acetylation in Escherichia coli.
    Zhang K; Zheng S; Yang JS; Chen Y; Cheng Z
    J Proteome Res; 2013 Feb; 12(2):844-51. PubMed ID: 23294111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency of CRISPR-Cas9 genetic engineering in Escherichia coli BL21 is impaired by lack of Lon protease.
    Okshevsky M; Xu Y; Masson L; Arbour M
    J Microbiol Methods; 2023 Jan; 204():106648. PubMed ID: 36470413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Suppressor Scanning for Systematic Discovery of Drug-Resistance Mutations.
    Ngan KC; Lue NZ; Lee C; Liau BB
    Curr Protoc; 2022 Dec; 2(12):e614. PubMed ID: 36541895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput determination of in vivo DNA sequence preferences for Cas protein binding using Library-ChIP.
    Wade JT
    Methods Enzymol; 2019; 616():117-132. PubMed ID: 30691640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.