BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30478402)

  • 1. Ternary crystal structure of human RORγ ligand-binding-domain, an inhibitor and corepressor peptide provides a new insight into corepressor interaction.
    Noguchi M; Nomura A; Doi S; Yamaguchi K; Hirata K; Shiozaki M; Maeda K; Hirashima S; Kotoku M; Yamaguchi T; Katsuda Y; Crowe P; Tao H; Thacher S; Adachi T
    Sci Rep; 2018 Nov; 8(1):17374. PubMed ID: 30478402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ternary complex of human RORγ ligand-binding domain, inverse agonist and SMRT peptide shows a unique mechanism of corepressor recruitment.
    Noguchi M; Nomura A; Murase K; Doi S; Yamaguchi K; Hirata K; Shiozaki M; Hirashima S; Kotoku M; Yamaguchi T; Katsuda Y; Steensma R; Li X; Tao H; Tse B; Fenn M; Babine R; Bradley E; Crowe P; Thacher S; Adachi T; Kamada M
    Genes Cells; 2017 Jun; 22(6):535-551. PubMed ID: 28493531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benzoxazepines Achieve Potent Suppression of IL-17 Release in Human T-Helper 17 (TH 17) Cells through an Induced-Fit Binding Mode to the Nuclear Receptor RORγ.
    Olsson RI; Xue Y; von Berg S; Aagaard A; McPheat J; Hansson EL; Bernström J; Hansson P; Jirholt J; Grindebacke H; Leffler A; Chen R; Xiong Y; Ge H; Hansson TG; Narjes F
    ChemMedChem; 2016 Jan; 11(2):207-16. PubMed ID: 26553345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small molecule mediated inhibition of RORγ-dependent gene expression and autoimmune disease pathology in vivo.
    Banerjee D; Zhao L; Wu L; Palanichamy A; Ergun A; Peng L; Quigley C; Hamann S; Dunstan R; Cullen P; Allaire N; Guertin K; Wang T; Chao J; Loh C; Fontenot JD
    Immunology; 2016 Apr; 147(4):399-413. PubMed ID: 26694902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural studies unravel the active conformation of apo RORγt nuclear receptor and a common inverse agonism of two diverse classes of RORγt inhibitors.
    Li X; Anderson M; Collin D; Muegge I; Wan J; Brennan D; Kugler S; Terenzio D; Kennedy C; Lin S; Labadia ME; Cook B; Hughes R; Farrow NA
    J Biol Chem; 2017 Jul; 292(28):11618-11630. PubMed ID: 28546429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of N-phenyl-2-(N-phenylphenylsulfonamido)acetamides as new RORγ inverse agonists: Virtual screening, structure-based optimization, and biological evaluation.
    Song Y; Xue X; Wu X; Wang R; Xing Y; Yan W; Zhou Y; Qian CN; Zhang Y; Xu Y
    Eur J Med Chem; 2016 Jun; 116():13-26. PubMed ID: 27043267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for hydroxycholesterols as natural ligands of orphan nuclear receptor RORgamma.
    Jin L; Martynowski D; Zheng S; Wada T; Xie W; Li Y
    Mol Endocrinol; 2010 May; 24(5):923-9. PubMed ID: 20203100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cardenolides strophanthidin, digoxigenin and dihydroouabain act as activators of the human RORγ/RORγT receptors.
    Karaś K; Sałkowska A; Walczak-Drzewiecka A; Ryba K; Dastych J; Bachorz RA; Ratajewski M
    Toxicol Lett; 2018 Oct; 295():314-324. PubMed ID: 29981919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RORγ Structural Plasticity and Druggability.
    Huang M; Bolin S; Miller H; Ng HL
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32727079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxysterols are agonist ligands of RORγt and drive Th17 cell differentiation.
    Soroosh P; Wu J; Xue X; Song J; Sutton SW; Sablad M; Yu J; Nelen MI; Liu X; Castro G; Luna R; Crawford S; Banie H; Dandridge RA; Deng X; Bittner A; Kuei C; Tootoonchi M; Rozenkrants N; Herman K; Gao J; Yang XV; Sachen K; Ngo K; Fung-Leung WP; Nguyen S; de Leon-Tabaldo A; Blevitt J; Zhang Y; Cummings MD; Rao T; Mani NS; Liu C; McKinnon M; Milla ME; Fourie AM; Sun S
    Proc Natl Acad Sci U S A; 2014 Aug; 111(33):12163-8. PubMed ID: 25092323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of a potent orally bioavailable retinoic acid receptor-related orphan receptor-gamma-t (RORγt) inhibitor, S18-000003.
    Sasaki Y; Odan M; Yamamoto S; Kida S; Ueyama A; Shimizu M; Haruna T; Watanabe A; Okuno T
    Bioorg Med Chem Lett; 2018 Dec; 28(22):3549-3553. PubMed ID: 30301676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of an allosteric binding site for RORγt inhibition.
    Scheepstra M; Leysen S; van Almen GC; Miller JR; Piesvaux J; Kutilek V; van Eenennaam H; Zhang H; Barr K; Nagpal S; Soisson SM; Kornienko M; Wiley K; Elsen N; Sharma S; Correll CC; Trotter BW; van der Stelt M; Oubrie A; Ottmann C; Parthasarathy G; Brunsveld L
    Nat Commun; 2015 Dec; 6():8833. PubMed ID: 26640126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent progress on nuclear receptor RORγ modulators.
    Cyr P; Bronner SM; Crawford JJ
    Bioorg Med Chem Lett; 2016 Sep; 26(18):4387-4393. PubMed ID: 27542308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery and Characterization of CD12681, a Potent RORγ Inverse Agonist, Preclinical Candidate for the Topical Treatment of Psoriasis.
    Ouvry G; Atrux-Tallau N; Bihl F; Bondu A; Bouix-Peter C; Carlavan I; Christin O; Cuadrado MJ; Defoin-Platel C; Deret S; Duvert D; Feret C; Forissier M; Fournier JF; Froude D; Hacini-Rachinel F; Harris CS; Hervouet C; Huguet H; Lafitte G; Luzy AP; Musicki B; Orfila D; Ozello B; Pascau C; Pascau J; Parnet V; Peluchon G; Pierre R; Piwnica D; Raffin C; Rossio P; Spiesse D; Taquet N; Thoreau E; Vatinel R; Vial E; Hennequin LF
    ChemMedChem; 2018 Feb; 13(4):321-337. PubMed ID: 29327456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of novel pyrazole-containing benzamides as potent RORγ inverse agonists.
    Wang T; Banerjee D; Bohnert T; Chao J; Enyedy I; Fontenot J; Guertin K; Jones H; Lin EY; Marcotte D; Talreja T; Van Vloten K
    Bioorg Med Chem Lett; 2015 Aug; 25(15):2985-90. PubMed ID: 26048789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural determinant for inducing RORgamma specific inverse agonism triggered by a synthetic benzoxazinone ligand.
    Marcotte DJ; Liu Y; Little K; Jones JH; Powell NA; Wildes CP; Silvian LF; Chodaparambil JV
    BMC Struct Biol; 2016 Jun; 16(1):7. PubMed ID: 27246200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomistic simulations shed new light on the activation mechanisms of RORγ and classify it as Type III nuclear hormone receptor regarding ligand-binding paths.
    Saen-Oon S; Lozoya E; Segarra V; Guallar V; Soliva R
    Sci Rep; 2019 Nov; 9(1):17249. PubMed ID: 31754232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potent and Orally Bioavailable Inverse Agonists of RORγt Resulting from Structure-Based Design.
    Narjes F; Xue Y; von Berg S; Malmberg J; Llinas A; Olsson RI; Jirholt J; Grindebacke H; Leffler A; Hossain N; Lepistö M; Thunberg L; Leek H; Aagaard A; McPheat J; Hansson EL; Bäck E; Tångefjord S; Chen R; Xiong Y; Hongbin G; Hansson TG
    J Med Chem; 2018 Sep; 61(17):7796-7813. PubMed ID: 30095900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing human Th17 differentiation through activation of orphan nuclear receptor retinoid acid-related orphan receptor γ (RORγ) by a class of aryl amide compounds.
    Zhang W; Zhang J; Fang L; Zhou L; Wang S; Xiang Z; Li Y; Wisely B; Zhang G; An G; Wang Y; Leung S; Zhong Z
    Mol Pharmacol; 2012 Oct; 82(4):583-90. PubMed ID: 22700697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational Changes of RORγ During Response Element Recognition and Coregulator Engagement.
    Strutzenberg TS; Zhu Y; Novick SJ; Garcia-Ordonez RD; Doebelin C; He Y; Chang MR; Kamenecka TM; Edwards DP; Griffin PR
    J Mol Biol; 2021 Nov; 433(22):167258. PubMed ID: 34547329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.