BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 30478448)

  • 21. Inhibition of eukaryotic translation initiation factor 4E is effective against chemo-resistance in colon and cervical cancer.
    Xi C; Wang L; Yu J; Ye H; Cao L; Gong Z
    Biochem Biophys Res Commun; 2018 Sep; 503(4):2286-2292. PubMed ID: 29959920
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition of Eukaryotic Initiating Factor eIF4E Overcomes Abemaciclib Resistance in Gastric Cancer.
    Zha HL; Chen W; Shi W; Liao YY
    Curr Med Sci; 2023 Oct; 43(5):927-934. PubMed ID: 37752406
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of eIF4E in response and acquired resistance to vemurafenib in melanoma.
    Zhan Y; Dahabieh MS; Rajakumar A; Dobocan MC; M'Boutchou MN; Goncalves C; Lucy SL; Pettersson F; Topisirovic I; van Kempen L; Del Rincón SV; Miller WH
    J Invest Dermatol; 2015 May; 135(5):1368-1376. PubMed ID: 25615552
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hyperactivation of mTORC1 and mTORC2 by multiple oncogenic events causes addiction to eIF4E-dependent mRNA translation in T-cell leukemia.
    Schwarzer A; Holtmann H; Brugman M; Meyer J; Schauerte C; Zuber J; Steinemann D; Schlegelberger B; Li Z; Baum C
    Oncogene; 2015 Jul; 34(27):3593-604. PubMed ID: 25241901
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antiviral Drug Ribavirin Targets Thyroid Cancer Cells by Inhibiting the eIF4E-β-Catenin Axis.
    Shen X; Zhu Y; Xiao Z; Dai X; Liu D; Li L; Xiao B
    Am J Med Sci; 2017 Aug; 354(2):182-189. PubMed ID: 28864377
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular targeting of the UDP-glucuronosyltransferase enzymes in high-eukaryotic translation initiation factor 4E refractory/relapsed acute myeloid leukemia patients: a randomized phase II trial of vismodegib, ribavirin with or without decitabine.
    Assouline S; Gasiorek J; Bergeron J; Lambert C; Culjkovic-Kraljacic B; Cocolakis E; Zakaria C; Szlachtycz D; Yee K; Borden KLB
    Haematologica; 2023 Nov; 108(11):2946-2958. PubMed ID: 36951168
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clinically relevant concentration of anti-viral drug ribavirin selectively targets pediatric osteosarcoma and increases chemosensitivity.
    Chen J; Xu X; Chen J
    Biochem Biophys Res Commun; 2018 Nov; 506(3):604-610. PubMed ID: 30454696
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-cell multiomics reveals increased plasticity, resistant populations, and stem-cell-like blasts in KMT2A-rearranged leukemia.
    Chen C; Yu W; Alikarami F; Qiu Q; Chen CH; Flournoy J; Gao P; Uzun Y; Fang L; Davenport JW; Hu Y; Zhu Q; Wang K; Libbrecht C; Felmeister A; Rozich I; Ding YY; Hunger SP; Felix CA; Wu H; Brown PA; Guest EM; Barrett DM; Bernt KM; Tan K
    Blood; 2022 Apr; 139(14):2198-2211. PubMed ID: 34864916
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ribavirin targets eIF4E dependent Akt survival signaling.
    Tan K; Culjkovic B; Amri A; Borden KL
    Biochem Biophys Res Commun; 2008 Oct; 375(3):341-5. PubMed ID: 18706892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potent obatoclax cytotoxicity and activation of triple death mode killing across infant acute lymphoblastic leukemia.
    Urtishak KA; Edwards AY; Wang LS; Hudome A; Robinson BW; Barrett JS; Cao K; Cory L; Moore JS; Bantly AD; Yu QC; Chen IM; Atlas SR; Willman CL; Kundu M; Carroll AJ; Heerema NA; Devidas M; Hilden JM; Dreyer ZE; Hunger SP; Reaman GH; Felix CA
    Blood; 2013 Apr; 121(14):2689-703. PubMed ID: 23393050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cryptotanshinone induces cell cycle arrest and apoptosis of multidrug resistant human chronic myeloid leukemia cells by inhibiting the activity of eukaryotic initiation factor 4E.
    Ge Y; Cheng R; Zhou Y; Shen J; Peng L; Xu X; Dai Q; Liu P; Wang H; Ma X; Jia J; Chen Z
    Mol Cell Biochem; 2012 Sep; 368(1-2):17-25. PubMed ID: 22614784
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cryptic recurrent ACIN1-NUTM1 fusions in non-KMT2A-rearranged infant acute lymphoblastic leukemia.
    Pincez T; Landry JR; Roussy M; Jouan L; Bilodeau M; Laramée L; Couture F; Sinnett D; Gendron P; Hébert J; Oligny L; Rouette A; Tran TH; Wilhelm BT; Bittencourt H; Cellot S
    Genes Chromosomes Cancer; 2020 Feb; 59(2):125-130. PubMed ID: 31515871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New insights into Notch1 regulation of the PI3K-AKT-mTOR1 signaling axis: targeted therapy of γ-secretase inhibitor resistant T-cell acute lymphoblastic leukemia.
    Hales EC; Taub JW; Matherly LH
    Cell Signal; 2014 Jan; 26(1):149-61. PubMed ID: 24140475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preclinical efficacy of azacitidine and venetoclax for infant KMT2A-rearranged acute lymphoblastic leukemia reveals a new therapeutic strategy.
    Cheung LC; Aya-Bonilla C; Cruickshank MN; Chiu SK; Kuek V; Anderson D; Chua GA; Singh S; Oommen J; Ferrari E; Hughes AM; Ford J; Kunold E; Hesselman MC; Post F; Faulk KE; Breese EH; Guest EM; Brown PA; Loh ML; Lock RB; Kees UR; Jafari R; Malinge S; Kotecha RS
    Leukemia; 2023 Jan; 37(1):61-71. PubMed ID: 36380143
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeting translation: eIF4E as an emerging anticancer drug target.
    Lu C; Makala L; Wu D; Cai Y
    Expert Rev Mol Med; 2016 Jan; 18():e2. PubMed ID: 26775675
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional relevance of circRNA aberrant expression in pediatric acute leukemia with KMT2A::AFF1 fusion.
    Tretti Parenzan C; Molin AD; Longo G; Gaffo E; Buratin A; Cani A; Boldrin E; Serafin V; Guglielmelli P; Vannucchi AM; Cazzaniga G; Biondi A; Locatelli F; Meyer LH; Buldini B; Te Kronnie G; Bresolin S; Bortoluzzi S
    Blood Adv; 2024 Mar; 8(5):1305-1319. PubMed ID: 38029383
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The EGR3 regulome of infant KMT2A-r acute lymphoblastic leukemia identifies differential expression of B-lineage genes predictive for outcome.
    Külp M; Larghero P; Alten J; Cario G; Eckert C; Caye-Eude A; Cavé H; Schmachtel T; Bardini M; Cazzaniga G; De Lorenzo P; Valsecchi MG; Bonig H; Meyer C; Rieger MA; Marschalek R
    Leukemia; 2023 Jun; 37(6):1216-1233. PubMed ID: 37100882
    [TBL] [Abstract][Full Text] [Related]  

  • 38. eIF4E/4E-BP ratio predicts the efficacy of mTOR targeted therapies.
    Alain T; Morita M; Fonseca BD; Yanagiya A; Siddiqui N; Bhat M; Zammit D; Marcus V; Metrakos P; Voyer LA; Gandin V; Liu Y; Topisirovic I; Sonenberg N
    Cancer Res; 2012 Dec; 72(24):6468-76. PubMed ID: 23100465
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MLL-Rearranged Acute Lymphoblastic Leukemia.
    El Chaer F; Keng M; Ballen KK
    Curr Hematol Malig Rep; 2020 Apr; 15(2):83-89. PubMed ID: 32350732
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Repurposing the FDA-Approved Antiviral Drug Ribavirin as Targeted Therapy for Nasopharyngeal Carcinoma.
    Huq S; Casaos J; Serra R; Peters M; Xia Y; Ding AS; Ehresman J; Kedda JN; Morales M; Gorelick NL; Zhao T; Ishida W; Perdomo-Pantoja A; Cecia A; Ji C; Suk I; Sidransky D; Brait M; Brem H; Skuli N; Tyler B
    Mol Cancer Ther; 2020 Sep; 19(9):1797-1808. PubMed ID: 32606016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.