These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30478613)

  • 21. Enhanced accumulation of Cd in castor (Ricinus communis L) by soil-applied chelators.
    Chhajro MA; Rizwan MS; Guoyong H; Jun Z; Kubar KA; Hongqing H
    Int J Phytoremediation; 2016; 18(7):664-70. PubMed ID: 26588431
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cadmium phytoextraction from contaminated paddy soil as influenced by EDTA and Si fertilizer.
    Zhang P; Zhao D; Liu Y; Zhang Y; Wei X; Xu B; Bocharnikova E; Matichenkov V
    Environ Sci Pollut Res Int; 2019 Aug; 26(23):23638-23644. PubMed ID: 31203547
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative assessment of two biodegradable chelants, S,S-ethylenediamine disuccinic acid and nitrilotriacetic acid, in facilitating Cd remediation by lesser swine cress (Coronopus didymus, Brassicaceae).
    Raina R; Sharma P; Batish DR; Kohli RK; Singh HP
    Environ Monit Assess; 2023 Nov; 195(12):1526. PubMed ID: 37996714
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of Cu-resistant plant growth-promoting rhizobacteria and EDTA on phytoremediation efficiency of plants in a Cu-contaminated soil.
    Abbaszadeh-Dahaji P; Baniasad-Asgari A; Hamidpour M
    Environ Sci Pollut Res Int; 2019 Nov; 26(31):31822-31833. PubMed ID: 31487012
    [TBL] [Abstract][Full Text] [Related]  

  • 25. EDTA-assisted Pb phytoextraction.
    Saifullah ; Meers E; Qadir M; de Caritat P; Tack FM; Du Laing G; Zia MH
    Chemosphere; 2009 Mar; 74(10):1279-91. PubMed ID: 19121533
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of reducing agent in extraction of arsenic and heavy metals from soils by use of EDTA.
    Kim EJ; Jeon EK; Baek K
    Chemosphere; 2016 Jun; 152():274-83. PubMed ID: 26974482
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chelator complexes enhanced Amaranthus hypochondriacus L. phytoremediation efficiency in Cd-contaminated soils.
    Wang K; Liu Y; Song Z; Wang D; Qiu W
    Chemosphere; 2019 Dec; 237():124480. PubMed ID: 31394449
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The use of NTA for lead phytoextraction from soil from a battery recycling site.
    Freitas EV; do Nascimento CW
    J Hazard Mater; 2009 Nov; 171(1-3):833-7. PubMed ID: 19595509
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Effects of Soil Moisture on Phytoremediation of As-Containinated Soils Using As-Hyperaccumulator Pteris vittata L].
    Liu QX; Yan XL; Liao XY; Lin LY; Yang J
    Huan Jing Ke Xue; 2015 Aug; 36(8):3056-61. PubMed ID: 26592040
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land.
    Visoottiviseth P; Francesconi K; Sridokchan W
    Environ Pollut; 2002; 118(3):453-61. PubMed ID: 12009144
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation.
    Wei CY; Chen TB
    Chemosphere; 2006 May; 63(6):1048-53. PubMed ID: 16297966
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phytoassessment of Vetiver grass enhanced with EDTA soil amendment grown in single and mixed heavy metal-contaminted soil.
    Ng CC; Boyce AN; Abas MR; Mahmood NZ; Han F
    Environ Monit Assess; 2019 Jun; 191(7):434. PubMed ID: 31201562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS.
    Luo C; Shen Z; Li X; Baker AJ
    Chemosphere; 2006 Jun; 63(10):1773-84. PubMed ID: 16297960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chelate-assisted phytoextraction of heavy metals in a soil contaminated with a pyritic sludge.
    Peñalosa JM; Carpena RO; Vázquez S; Agha R; Granado A; Sarro MJ; Esteban E
    Sci Total Environ; 2007 May; 378(1-2):199-204. PubMed ID: 17328942
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of sugarcane vinasse and EDTA on cadmium phytoextraction by two saltbush plants.
    Eissa MA
    Environ Sci Pollut Res Int; 2016 May; 23(10):10247-54. PubMed ID: 26884237
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of EDTA, citric acid, and tartaric acid application on growth, phytoremediation potential, and antioxidant response of
    Saffari VR; Saffari M
    Int J Phytoremediation; 2020; 22(11):1204-1214. PubMed ID: 32329354
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced phytoextraction: in search of EDTA alternatives.
    Meers E; Hopgood M; Lesage E; Vervaeke P; Tack FM; Verloo MG
    Int J Phytoremediation; 2004; 6(2):95-109. PubMed ID: 15328977
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides.
    Anning AK; Akoto R
    Ecotoxicol Environ Saf; 2018 Feb; 148():97-104. PubMed ID: 29031880
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An evaluation of different soil washing solutions for remediating arsenic-contaminated soils.
    Wang Y; Ma F; Zhang Q; Peng C; Wu B; Li F; Gu Q
    Chemosphere; 2017 Apr; 173():368-372. PubMed ID: 28129613
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combined effects of cadmium and zinc on growth, tolerance, and metal accumulation in Chara australis and enhanced phytoextraction using EDTA.
    Clabeaux BL; Navarro DA; Aga DS; Bisson MA
    Ecotoxicol Environ Saf; 2013 Dec; 98():236-43. PubMed ID: 24035462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.