These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30479311)

  • 1. Quantitative measurement of contact area and electron transport across platinum nanocontacts for scanning probe microscopy and electrical nanodevices.
    Vishnubhotla SB; Chen R; Khanal SR; Li J; Stach EA; Martini A; Jacobs TDB
    Nanotechnology; 2019 Nov; 30(4):045705. PubMed ID: 30479311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulations of the effect of an oxide on contact area measurements from conductive atomic force microscopy.
    Chen R; Vishnubhotla SB; Jacobs TDB; Martini A
    Nanoscale; 2019 Jan; 11(3):1029-1036. PubMed ID: 30569937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding contact between platinum nanocontacts at low loads: The effect of reversible plasticity.
    Vishnubhotla SB; Chen R; Khanal SR; Martini A; Jacobs TDB
    Nanotechnology; 2019 Jan; 30(3):035704. PubMed ID: 30444727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum thermopower of metallic atomic-size contacts at room temperature.
    Evangeli C; Matt M; Rincón-García L; Pauly F; Nielaba P; Rubio-Bollinger G; Cuevas JC; Agraït N
    Nano Lett; 2015 Feb; 15(2):1006-11. PubMed ID: 25607343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrahigh strength and shear-assisted separation of sliding nanocontacts studied in situ.
    Sato T; Milne ZB; Nomura M; Sasaki N; Carpick RW; Fujita H
    Nat Commun; 2022 May; 13(1):2551. PubMed ID: 35538085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling Atomic-Scale Electrical Contact Quality Across Two-Dimensional Interfaces.
    Song A; Shi R; Lu H; Gao L; Li Q; Guo H; Liu Y; Zhang J; Ma Y; Tang X; Du S; Li X; Liu X; Hu YZ; Gao HJ; Luo J; Ma TB
    Nano Lett; 2019 Jun; 19(6):3654-3662. PubMed ID: 31088050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling the Electrical Transport Properties of Nanocontacts to Nanowires.
    Lord AM; Maffeis TG; Kryvchenkova O; Cobley RJ; Kalna K; Kepaptsoglou DM; Ramasse QM; Walton AS; Ward MB; Köble J; Wilks SP
    Nano Lett; 2015 Jul; 15(7):4248-54. PubMed ID: 26042356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covalent Bonding and Atomic-Level Plasticity Increase Adhesion in Silicon-Diamond Nanocontacts.
    Milne ZB; Schall JD; Jacobs TDB; Harrison JA; Carpick RW
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40734-40748. PubMed ID: 31498997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum conductance in semimetallic bismuth nanocontacts.
    Rodrigo JG; García-Martín A; Sáenz JJ; Vieira S
    Phys Rev Lett; 2002 Jun; 88(24):246801. PubMed ID: 12059321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong Fermi-Level Pinning in GeS-Metal Nanocontacts.
    Sun Y; Jiao Z; Zandvliet HJW; Bampoulis P
    J Phys Chem C Nanomater Interfaces; 2022 Jul; 126(27):11400-11406. PubMed ID: 35865793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unexpected magnetic properties of gas-stabilized platinum nanostructures in the tunneling regime.
    Cespedes O; Wheeler M; Moorsom T; Viret M
    Nano Lett; 2015 Jan; 15(1):45-50. PubMed ID: 25531537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecularly resolved protein electromechanical properties.
    Axford D; Davis JJ; Wang N; Wang D; Zhang T; Zhao J; Peters B
    J Phys Chem B; 2007 Aug; 111(30):9062-8. PubMed ID: 17628094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defect Dominated Charge Transport and Fermi Level Pinning in MoS
    Bampoulis P; van Bremen R; Yao Q; Poelsema B; Zandvliet HJW; Sotthewes K
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19278-19286. PubMed ID: 28508628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modifying the Interface Edge to Control the Electrical Transport Properties of Nanocontacts to Nanowires.
    Lord AM; Ramasse QM; Kepaptsoglou DM; Evans JE; Davies PR; Ward MB; Wilks SP
    Nano Lett; 2017 Feb; 17(2):687-694. PubMed ID: 28001420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements.
    Wierez-Kien M; Craciun AD; Pinon AV; Roux SL; Gallani JL; Rastei MV
    Nanotechnology; 2018 Apr; 29(15):155704. PubMed ID: 29406318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-Dependent Evolution of Electrical Conductance from Tunneling to Atomic Point Contact.
    Kim H; Hasegawa Y
    Phys Rev Lett; 2015 May; 114(20):206801. PubMed ID: 26047248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of surface catalyzed reactions; the roles of surface defects, surface diffusion, and hot electrons.
    Somorjai GA; Bratlie KM; Montano MO; Park JY
    J Phys Chem B; 2006 Oct; 110(40):20014-22. PubMed ID: 17020389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding Interlayer Contact Conductance in Twisted Bilayer Graphene.
    Yu Z; Song A; Sun L; Li Y; Gao L; Peng H; Ma T; Liu Z; Luo J
    Small; 2020 Apr; 16(15):e1902844. PubMed ID: 31490630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation and rupture of Schottky nanocontacts on ZnO nanocolumns.
    Pérez-García B; Zúñiga-Pérez J; Muñoz-Sanjosé V; Colchero J; Palacios-Lidón E
    Nano Lett; 2007 Jun; 7(6):1505-11. PubMed ID: 17511510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remote control of magnetostriction-based nanocontacts at room temperature.
    Jammalamadaka SN; Kuntz S; Berg O; Kittler W; Kannan UM; Chelvane JA; Sürgers C
    Sci Rep; 2015 Sep; 5():13621. PubMed ID: 26323326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.