These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30479311)

  • 21. Electron transfer mediating properties of hydrocarbons as a function of chain length: a differential scanning conductive tip atomic force microscopy investigation.
    Scaini D; Castronovo M; Casalis L; Scoles G
    ACS Nano; 2008 Mar; 2(3):507-15. PubMed ID: 19206577
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Verification of unzipping models of electromigration in gold nanocontacts by in situ high-resolution transmission electron microscopy.
    Kizuka T; Kodama S; Matsuda T
    Nanotechnology; 2010 Dec; 21(49):495706. PubMed ID: 21079293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Length dependence of electron transport through molecular wires--a first principles perspective.
    Khoo KH; Chen Y; Li S; Quek SY
    Phys Chem Chem Phys; 2015 Jan; 17(1):77-96. PubMed ID: 25407785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scanning electron microscopy of Salmonella biofilms on various food-contact surfaces in catfish mucus.
    Dhowlaghar N; Bansal M; Schilling MW; Nannapaneni R
    Food Microbiol; 2018 Sep; 74():143-150. PubMed ID: 29706330
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Local electronic transport across probe/ionic conductor interface in scanning probe microscopy.
    Romanyuk KN; Alikin DO; Slautin BN; Tselev A; Shur VY; Kholkin AL
    Ultramicroscopy; 2021 Jan; 220():113147. PubMed ID: 33130324
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlling electron transfer processes on insulating surfaces with the non-contact atomic force microscope.
    Trevethan T; Shluger A
    Nanotechnology; 2009 Jul; 20(26):264019. PubMed ID: 19509440
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Local conductance measurements of double-layer graphene on SiC substrate.
    Nagase M; Hibino H; Kageshima H; Yamaguchi H
    Nanotechnology; 2009 Nov; 20(44):445704. PubMed ID: 19809118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stability of Schottky and Ohmic Au Nanocatalysts to ZnO Nanowires.
    Lord AM; Ramasse QM; Kepaptsoglou DM; Periwal P; Ross FM; Wilks SP
    Nano Lett; 2017 Nov; 17(11):6626-6636. PubMed ID: 29024594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inversion of magnetoresistance in magnetic tunnel junctions: effect of pinhole nanocontacts.
    Mukhopadhyay S; Das I
    Phys Rev Lett; 2006 Jan; 96(2):026601. PubMed ID: 16486609
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantized magnetoresistance in atomic-size contacts.
    Sokolov A; Zhang C; Tsymbal EY; Redepenning J; Doudin B
    Nat Nanotechnol; 2007 Mar; 2(3):171-5. PubMed ID: 18654248
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural Asymmetry of Metallic Single-Atom Contacts Detected by Current-Voltage Characteristics.
    Isshiki Y; Li D; Kiguchi M; Nishino T; Pauly F; Fujii S
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11919-11926. PubMed ID: 35225596
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanocontact resistance and structural disorder induced resistivity variation in metallic metal-oxide nanowires.
    Lin YF; Wu ZY; Lin KC; Chen CC; Jian WB; Chen FR; Kai JJ
    Nanotechnology; 2009 Nov; 20(45):455401. PubMed ID: 19822926
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Atomistic features in the electrochemical potential drop across a graphene grain boundary.
    Hoffmann-Vogel R
    Nanotechnology; 2014 Dec; 25(48):480501. PubMed ID: 25397732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature effects on the atomic arrangement and conductance of atomic-size gold nanowires generated by mechanical stretching.
    Lagos MJ; Sato F; Autreto PA; Galvão DS; Rodrigues V; Ugarte D
    Nanotechnology; 2010 Dec; 21(48):485702. PubMed ID: 21063051
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrical transport and breakdown in graphene multilayers loaded with electron beam induced deposited platinum.
    Kulshrestha N; Misra A; Koratkar N; Misra DS
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3424-30. PubMed ID: 23489064
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Conductive Collagen by Low-Temperature Atomic Layer Deposition of Platinum.
    Bishal AK; Anderson ND; Ho Hung SK; Jokisaari JR; Klie RF; Koh A; Abdussalam W; Sukotjo C; Takoudis CG
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):44371-44380. PubMed ID: 32886478
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scanning electrochemical cell microscopy: theory and experiment for quantitative high resolution spatially-resolved voltammetry and simultaneous ion-conductance measurements.
    Snowden ME; Güell AG; Lai SC; McKelvey K; Ebejer N; O'Connell MA; Colburn AW; Unwin PR
    Anal Chem; 2012 Mar; 84(5):2483-91. PubMed ID: 22279955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrical transport and mechanical properties of alkylsilane self-assembled monolayers on silicon surfaces probed by atomic force microscopy.
    Park JY; Qi Y; Ashby PD; Hendriksen BL; Salmeron M
    J Chem Phys; 2009 Mar; 130(11):114705. PubMed ID: 19317553
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study of ballistic gold conductor using ultra-high-vacuum transmission electron microscopy.
    Oshima Y
    J Electron Microsc (Tokyo); 2012 Jun; 61(3):133-44. PubMed ID: 22434562
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of leaf surfaces using scanning ion conductance microscopy.
    Walker SC; Allen S; Bell G; Roberts CJ
    J Microsc; 2015 May; 258(2):119-26. PubMed ID: 25611705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.